Suppr超能文献

低细胞外碳酸氢盐浓度下酸/碱通过水蛭巨大神经胶质细胞膜的转运

Acid/base transport across the leech giant glial cell membrane at low external bicarbonate concentration.

作者信息

Deitmer J W, Schneider H P

机构信息

Abteilung fur Allgemeine Zoologie, FB Biologie, Universitat Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany.

出版信息

J Physiol. 1998 Oct 15;512 ( Pt 2)(Pt 2):459-69. doi: 10.1111/j.1469-7793.1998.459be.x.

Abstract
  1. We have studied acid/base transport across the cell membrane of the giant neuropile glial cell in the leech (Hirudo medicinalis) central nervous system induced by changing the external pH (pHo), using double-barrelled, pH-sensitive microelectrodes. In the presence of 5 % CO2 and 24 mM HCO3-, the intracellular pH (pHi) rapidly changes due to a potent, reversible Na+-HCO3- cotransport across the glial membrane. We have now investigated the transport mechanism which leads to pHi changes in the nominal absence of CO2/HCO3-, where the HCO3- concentration is expected to be below 1 mM. 2. The intracellular pH increased and then decreased when pHo was altered from 7.4 to 7.8 and then 7.0 with a rate of increase of +0.026 +/- 0.008 and a rate of decrease of -0.028 +/- 0.009 pH units min-1 (+/- s.d., n = 49), indicating an acid/base flux rate of 0.64 and 0.71 mM min-1 across the glial membrane, respectively. 3. In the absence of external sodium (Na+replaced by N-methyl-D-glucamine), pHi slowly decreased, and the rate of alkali and acid loading was reduced to 19 and 28 %, respectively, (n = 12). Amiloride (2 mM), which inhibits Na+-H+ exchange, had no effect on the alkali/acid loading (n = 6). 4. The alkali and acid loading were not impaired after the removal of external chloride (Cl-o, replaced by gluconate; n = 11), but were significantly reduced by the anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS, 0.5 mM) to 23 and 16 %, respectively, of the control (P < 0.001; n = 5). 5. Alkali and acid loading were affected differently by manipulating the availability of residual HCO3-. After adding the membrane-permeable carbonic anhydrase inhibitor ethoxyzolamide (EZA, 2 microM) to the saline, the acid loading, but not the alkali loading, was significantly reduced (by 25 %, P < 0.01), while lowering the residual CO2/HCO3- concentration in the saline by O2 bubbling significantly reduced the alkali loading (by 59 %, P < 0. 02), but not the acid loading. 6. Changing the membrane holding potential in voltage-clamped glial cells or raising the external K+ concentration to 30 mM had no significant effect on acid/base loading. 7. It is concluded that a residual HCO3- concentration of less than 1 mM in nominally CO2/HCO3--free salines and HCO3- produced endogenously in the glial cells support alkali and acid loading across the glial cell membrane, presumably by activation of the reversible Na+-HCO3- cotransporter. The results suggest a very high selectivity and affinity of this cotransporter for HCO3-; they imply that HCO3--dependent processes may not be negligible even in the nominal absence of CO2/HCO3-, when the HCO3- concentration is expected to be in the submillimolar range.
摘要
  1. 我们使用双管pH敏感微电极,研究了改变外部pH(pHo)对水蛭(医用水蛭)中枢神经系统中巨大神经纤维胶质细胞膜上酸/碱转运的影响。在5%二氧化碳和24 mM碳酸氢根存在的情况下,由于胶质细胞膜上一种强效、可逆的钠-碳酸氢根协同转运体,细胞内pH(pHi)会迅速变化。我们现在研究了在名义上不存在二氧化碳/碳酸氢根的情况下导致pHi变化的转运机制,此时预计碳酸氢根浓度低于1 mM。2. 当pHo从7.4变为7.8然后变为7.0时,细胞内pH先升高后降低,升高速率为+0.026±0.008,降低速率为-0.028±0.009 pH单位每分钟(±标准差,n = 49),这表明通过胶质细胞膜的酸/碱通量速率分别为0.64和0.71 mM每分钟。3. 在没有外部钠(用N-甲基-D-葡糖胺取代钠)的情况下,pHi缓慢下降,碱和酸加载速率分别降至19%和28%(n = 12)。抑制钠-氢交换的氨氯地平(2 mM)对碱/酸加载没有影响(n = 6)。4. 去除外部氯(用葡萄糖酸盐取代Cl-o;n = 11)后,碱和酸加载不受影响,但阴离子转运抑制剂4,4'-二异硫氰酸根合芪-2,2'-二磺酸(DIDS,0.5 mM)使其分别显著降低至对照的23%和16%(P < 0.001;n = 5)。5. 通过操纵残余碳酸氢根的可用性,碱和酸加载受到不同影响。向盐溶液中加入膜通透性碳酸酐酶抑制剂乙氧唑胺(EZA,2 microM)后,酸加载显著降低(降低25%,P < 0.01),但碱加载不受影响,而通过氧气鼓泡降低盐溶液中残余二氧化碳/碳酸氢根浓度显著降低了碱加载(降低59%,P < 0.02),但酸加载不受影响。6. 在电压钳制的胶质细胞中改变膜保持电位或将外部钾离子浓度提高到30 mM对酸/碱加载没有显著影响。7. 得出的结论是,在名义上无二氧化碳/碳酸氢根的盐溶液中残余碳酸氢根浓度低于1 mM以及胶质细胞内源性产生的碳酸氢根支持通过胶质细胞膜的碱和酸加载,推测是通过激活可逆的钠-碳酸氢根协同转运体。结果表明该协同转运体对碳酸氢根具有非常高的选择性和亲和力;这意味着即使在名义上不存在二氧化碳/碳酸氢根、预计碳酸氢根浓度处于亚毫摩尔范围内时,依赖碳酸氢根的过程可能也不可忽略。

相似文献

1
Acid/base transport across the leech giant glial cell membrane at low external bicarbonate concentration.
J Physiol. 1998 Oct 15;512 ( Pt 2)(Pt 2):459-69. doi: 10.1111/j.1469-7793.1998.459be.x.
3
An inwardly directed electrogenic sodium-bicarbonate co-transport in leech glial cells.
J Physiol. 1989 Apr;411:179-94. doi: 10.1113/jphysiol.1989.sp017567.
4
Voltage-dependent clamp of intracellular pH of identified leech glial cells.
J Physiol. 1995 May 15;485 ( Pt 1)(Pt 1):157-66. doi: 10.1113/jphysiol.1995.sp020720.
5
Sodium-bicarbonate cotransport current in identified leech glial cells.
J Physiol. 1994 Jan 1;474(1):43-53. doi: 10.1113/jphysiol.1994.sp020001.
7
Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: HCO3- dependence.
J Physiol. 1994 Sep 1;479 ( Pt 2)(Pt 2):317-29. doi: 10.1113/jphysiol.1994.sp020298.

引用本文的文献

1
Physiology of Astroglia.
Physiol Rev. 2018 Jan 1;98(1):239-389. doi: 10.1152/physrev.00042.2016.
2
Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances.
J Physiol. 2017 Apr 15;595(8):2569-2585. doi: 10.1113/JP273394. Epub 2017 Feb 15.
5
The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters.
Physiol Rev. 2013 Apr;93(2):803-959. doi: 10.1152/physrev.00023.2012.
6
Sodium influx pathways during and after anoxia in rat hippocampal neurons.
J Neurosci. 2004 Dec 8;24(49):11057-69. doi: 10.1523/JNEUROSCI.2829-04.2004.

本文引用的文献

1
Intracellular Ca2+ regulation by the leech giant glial cell.
J Physiol. 1998 Feb 15;507 ( Pt 1)(Pt 1):147-62. doi: 10.1111/j.1469-7793.1998.147bu.x.
2
Membrane responses evoked by organic buffers in identified leech neurones.
J Exp Biol. 1996;199(Pt 2):327-35. doi: 10.1242/jeb.199.2.327.
3
Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter.
Nature. 1997 May 22;387(6631):409-13. doi: 10.1038/387409a0.
4
Novel chloride-dependent acid loader in the guinea-pig ventricular myocyte: part of a dual acid-loading mechanism.
J Physiol. 1996 Aug 15;495 ( Pt 1)(Pt 1):65-82. doi: 10.1113/jphysiol.1996.sp021574.
5
pH regulation and proton signalling by glial cells.
Prog Neurobiol. 1996 Feb;48(2):73-103. doi: 10.1016/0301-0082(95)00039-9.
6
Intracellular pH regulation in cultured rat astrocytes in CO2/HCO3(-)-containing media.
Exp Brain Res. 1993;95(3):371-80. doi: 10.1007/BF00227129.
7
Sodium-bicarbonate cotransport current in identified leech glial cells.
J Physiol. 1994 Jan 1;474(1):43-53. doi: 10.1113/jphysiol.1994.sp020001.
9
Voltage-dependent clamp of intracellular pH of identified leech glial cells.
J Physiol. 1995 May 15;485 ( Pt 1)(Pt 1):157-66. doi: 10.1113/jphysiol.1995.sp020720.
10
Amiloride: a molecular probe of sodium transport in tissues and cells.
Am J Physiol. 1982 Mar;242(3):C131-45. doi: 10.1152/ajpcell.1982.242.3.C131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验