Suppr超能文献

对已鉴定的水蛭神经胶质细胞细胞内pH值的电压依赖性钳制

Voltage-dependent clamp of intracellular pH of identified leech glial cells.

作者信息

Deitmer J W, Schneider H P

机构信息

Abteilung für Allgemeine Zoologie, FB Biologie, Universität Kaiserslautern, Germany.

出版信息

J Physiol. 1995 May 15;485 ( Pt 1)(Pt 1):157-66. doi: 10.1113/jphysiol.1995.sp020720.

Abstract
  1. The intracellular pH (pHi) was measured in voltage-clamped, giant neuropile glial cells in isolated segmental ganglia of the leech Hirudo medicinalis, using double-barrelled, pH-sensitive microelectrodes and a slow, two-electrode voltage-clamp system. The potential sensitivity of the pHi regulation in these glial cells was found to be due to an electrogenic Na(+)-HCO3- cotransporter (Deitmer & Szatkowski, 1990). 2. In the presence of 5% CO2 and 24 mM HCO3- (pH 7.4), pHi shifted by 1 pH unit per 110 mV, corresponding to a stoichiometry of 2HCO3-: 1 Na+ of the cotransporter, while in Hepes-buffered CO2-HCO3(-)-free saline (pH 7.4), pHi changed by 1 pH unit per 274 mV. The potential sensitivity of pHi decreased at lower pHo, being 1 pH unit per 216 mV at external pH (pHo) 7.0. 3. Changing pHo between 7.8 and 6.6 induced pHi shifts with a slope of 0.72 pHi units per pHo unit in non-clamped, and of 0.80 pHi units per pHo unit in voltage-clamped cells, indicating that pHi largely followed pHo. The electrochemical gradient of H(+)-HCO3- across the glial membrane was around 56 mV, and remained almost constant over this pHo range. 4. The membrane potential-dependent and pHo-sensitive shifts of pHi were unaffected by amiloride, an inhibitor of Na(+)-H+ exchange. 5. The intracellular acidification upon lowering pHo could be reversed by depolarizing the membrane as predicted from a cotransporter, whose equilibrium follows the membrane potential by resetting pHi. 6. The results indicate that the pHi of leech glial cells is dominated by the electrogenic Na(+)-HCO3- cotransporter, and is hence a function of the membrane potential, and the Na+ and H(+)-HCO3- gradients, across the cell membrane.
摘要
  1. 使用双管pH敏感微电极和慢速双电极电压钳系统,在电压钳制的医用水蛭节段神经节分离出的巨大神经毡胶质细胞中测量细胞内pH(pHi)。发现这些胶质细胞中pHi调节的电位敏感性归因于电生性Na(+)-HCO3-协同转运体(Deitmer和Szatkowski,1990)。2. 在5% CO2和24 mM HCO3-(pH 7.4)存在的情况下,pHi每110 mV变化1个pH单位,对应于协同转运体2HCO3-:1 Na+的化学计量比,而在Hepes缓冲的无CO2-HCO3-的盐溶液(pH 7.4)中,pHi每274 mV变化1个pH单位。在较低的细胞外pH(pHo)下,pHi的电位敏感性降低,在细胞外pH(pHo)为7.0时为每216 mV变化1个pH单位。3. 在7.8至6.6之间改变pHo会诱导pHi变化,在非钳制细胞中斜率为每pHo单位0.72个pHi单位,在电压钳制细胞中为每pHo单位0.80个pHi单位,表明pHi在很大程度上跟随pHo。H(+)-HCO3-跨胶质细胞膜的电化学梯度约为56 mV,并且在该pHo范围内几乎保持恒定。4. pHi的膜电位依赖性和pHo敏感性变化不受Na(+)-H+交换抑制剂氨氯吡脒的影响。5. 如从协同转运体预测的那样,降低pHo时的细胞内酸化可通过使膜去极化来逆转,该协同转运体的平衡通过重置pHi来跟随膜电位。6. 结果表明,水蛭胶质细胞的pHi主要由电生性Na(+)-HCO3-协同转运体决定,因此是跨细胞膜的膜电位以及Na+和H(+)-HCO3-梯度的函数。

相似文献

本文引用的文献

5
Significance of the potassium signal from neurones to glial cells.
Nature. 1982 Jan 7;295(5844):59-61. doi: 10.1038/295059a0.
10
Extracellular K+ accumulation in the central nervous system.中枢神经系统中细胞外钾离子的蓄积
Prog Biophys Mol Biol. 1983;42(2-3):135-89. doi: 10.1016/0079-6107(83)90006-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验