Suppr超能文献

Pluronic copolymer liquid crystals: unique, replaceable media for capillary gel electrophoresis.

作者信息

Rill R L, Liu Y, Van Winkle D H, Locke B R

机构信息

Department of Chemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee 32306-4390, USA.

出版信息

J Chromatogr A. 1998 Aug 21;817(1-2):287-95. doi: 10.1016/s0021-9673(98)00522-6.

Abstract

Liquid crystalline solutions of Pluronic copolymers are versatile alternatives to solutions of entangled, random coil polymers as replaceable media for capillary gel electrophoresis (CGE). Pluronic copolymers are tri-block polymers of poly(ethylene oxide) [(EO)x] and poly(propylene oxide) [(PO)y] with the general formula (EO)x(PO)y(EO)x. Large micelles form in aqueous solutions in which central, hydrophobic cores of (PO)y segments are surrounded by "brushes" of hydrated (EO)x tails. Solutions of Pluronic F127 (BASF Performance Chemicals) in a concentration range of about 18-30% are liquids at refrigerator temperatures (< or = 5 degrees C) and are easily introduced into capillaries. A self-supporting, gel-like liquid crystalline phase is formed as the temperature is raised to > or = 20 degrees C. This liquid crystalline phase consists of spherical micelles with diameters of 17-18 nm which pack with local cubic symmetry. CGE in Pluronic F127 liquid crystals separates species within several chemical classes as varied as nucleoside monophosphates and organic dyes, oligonucleotides of 4-60 nucleotides, DNA fragments of 50-3000 base pairs (bp), and supercoiled plasmid DNAs of 2000-10,000 bp. Mechanisms of molecular sieving in polymer liquid crystals must differ in fundamental ways from separations in random polymer gels because molecules move around uncrosslinked obstacles that are larger than the smallest dimensions of typical analytes. Molecular sieving in Pluronic liquid crystals is envisioned to occur as molecules squeeze between hydrated (EO)x strands of micelle brushes, or through brushtips and interstitial spaces between micelles. Small molecules such as nucleotides appear to separate by a different mechanism involving partitioning between hydrophilic and hydrophobic environments. This process is termed "hydrophobic interaction electrophoresis". The unique structures of Pluronic copolymers and their liquid crystalline phases provide new challenges and opportunities in separations science.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验