Suppr超能文献

髓鞘中以及由施万细胞表达的髓鞘相关糖蛋白会抑制轴突再生和分支。

Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching.

作者信息

Shen Y J, DeBellard M E, Salzer J L, Roder J, Filbin M T

机构信息

Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Avenue, New York, New York, 10021, USA.

出版信息

Mol Cell Neurosci. 1998 Sep;12(1-2):79-91. doi: 10.1006/mcne.1998.0700.

Abstract

The mammalian CNS does not regenerate after injury due largely to myelin-specific inhibitors of axonal growth. The PNS, however, does regenerate once myelin is cleared and myelin proteins are down-regulated by Schwann cells. Myelin-associated glycoprotein (MAG), a sialic acid binding protein, is a potent inhibitor of neurite outgrowth when presented to neurons in culture. Here, we present additional evidence that strongly supports the suggestion that MAG contributes to the overall inhibitory properties of myelin. When myelin from MAG-/- mice is used as a substrate, axonal length is 100 and 60% longer for neonatal cerebellar and older DRG neurons, respectively, compared to MAG+/+ myelin. The converse is true for neurites from neonatal DRG neurons, which are twice as long on MAG+/+ relative to MAG-/- myelin, consistent with MAG's dual role of promoting axonal growth from neonatal DRG neurons but inhibiting growth in older DRG and all other postnatal neurons examined. Furthermore, desialylating neurons reverses inhibition by CNS myelin by 45%. Contrary to previous reports, under these conditions PNS myelin is also inhibitory for axonal regeneration. Importantly, results using PNS MAG-/- myelin as a substrate suggest that MAG contributes to this inhibition. Finally, when Schwann cells not expressing MAG and permissive for axonal growth are induced to express MAG by retroviral infection, not only is axonal outgrowth greatly inhibited by these cells but so also is neurite branching. This suggests for the first time that MAG not only affects axonal regeneration but may also play a role in the control of axonal sprouting.

摘要

哺乳动物的中枢神经系统(CNS)在损伤后无法再生,这主要是由于轴突生长的髓磷脂特异性抑制剂。然而,周围神经系统(PNS)在髓磷脂被清除且施万细胞下调髓磷脂蛋白后确实能够再生。髓磷脂相关糖蛋白(MAG)是一种唾液酸结合蛋白,当在培养中呈现给神经元时,它是神经突生长的有效抑制剂。在此,我们提供了额外的证据,有力地支持了MAG促成髓磷脂整体抑制特性的观点。当将来自MAG - / - 小鼠的髓磷脂用作底物时,与MAG + / + 髓磷脂相比,新生小脑神经元和较老的背根神经节(DRG)神经元的轴突长度分别长100%和60%。新生DRG神经元的神经突情况则相反,在MAG + / + 髓磷脂上的长度是MAG - / - 髓磷脂上的两倍,这与MAG促进新生DRG神经元轴突生长但抑制较老DRG神经元和所有其他检查的出生后神经元生长的双重作用一致。此外,去除神经元上的唾液酸可使中枢神经系统髓磷脂的抑制作用逆转45%。与先前的报道相反,在这些条件下,周围神经系统髓磷脂对轴突再生也具有抑制作用。重要的是,使用周围神经系统MAG - / - 髓磷脂作为底物的结果表明MAG促成了这种抑制作用。最后,当通过逆转录病毒感染诱导不表达MAG且允许轴突生长的施万细胞表达MAG时,不仅这些细胞极大地抑制了轴突生长,而且神经突分支也受到抑制。这首次表明MAG不仅影响轴突再生,还可能在轴突发芽的控制中发挥作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验