Suppr超能文献

Tissue-specific responses of branched-chain alpha-ketoacid dehydrogenase activity in metabolic acidosis.

作者信息

Price S R, Wang X, Bailey J L

机构信息

Renal Division, Emory University, Atlanta, Georgia 30322, USA.

出版信息

J Am Soc Nephrol. 1998 Oct;9(10):1892-8. doi: 10.1681/ASN.V9101892.

Abstract

In adrenalectomized rats, acidosis does not increase whole-body leucine oxidation unless a physiologic amount of glucocorticoids (dexamethasone) is also provided; an equivalent dose of dexamethasone without acidosis does not change leucine catabolism. Because the influences of acidification and glucocorticoids on branched-chain amino acid metabolism in specific organs are unknown, the function of branched-chain alpha-ketoacid dehydrogenase (BCKAD), the rate-limiting enzyme in branched-chain amino acid catabolism, in adrenalectomized rat skeletal muscle and liver, the two major tissues that degrade branched-chain amino acid was measured. In muscle of acidotic adrenalectomized rats receiving dexamethasone, basal and total BCKAD activities were increased 2.6- (P < 0.05) and 2.8-fold (P < 0.05), respectively. Neither acidosis nor dexamethasone alone increased these activities. BCKAD E1alpha subunit mRNA in muscle of acidotic rats given dexamethasone was increased 1.89-fold (P < 0.05) in parallel with the change in BCKAD activity; BCKAD E2 subunit mRNA was increased by acidosis, dexamethasone, or a combination of both stimuli. In contrast, basal BCKAD activity in liver of rats with acidosis or dexamethasone was nearly threefold lower (P < 0.05) and changes in enzyme activity reflected reduced subunit mRNA. Thus, there are reciprocal, tissue-specific changes in BCKAD function in response to acidosis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验