Suppr超能文献

血管紧张素II(AT1A)受体羧基末端的磷酸化:在受体内吞作用中的作用。

Phosphorylation of the angiotensin II (AT1A) receptor carboxyl terminus: a role in receptor endocytosis.

作者信息

Thomas W G, Motel T J, Kule C E, Karoor V, Baker K M

机构信息

Baker Medical Research Institute, Melbourne, Australia.

出版信息

Mol Endocrinol. 1998 Oct;12(10):1513-24. doi: 10.1210/mend.12.10.0179.

Abstract

The molecular mechanism of angiotensin II type I receptor (AT1) endocytosis is obscure, although the identification of an important serine/threonine rich region (Thr332Lys333Met334Ser335Thr336Leu337 Ser338) within the carboxyl terminus of the AT1A receptor subtype suggests that phosphorylation may be involved. In this study, we examined the phosphorylation and internalization of full-length AT1A receptors and compared this to receptors with truncations and mutations of the carboxyl terminus. Epitope-tagged full-length AT1A receptors, when transiently transfected in Chinese hamster ovary (CHO)-K1 cells, displayed a basal level of phosphorylation that was significantly enhanced by angiotensin II (Ang II) stimulation. Phosphorylation of AT1A receptors was progressively reduced by serial truncation of the carboxyl terminus, and truncation to Lys325, which removed the last 34 amino acids, almost completely inhibited Ang II-stimulated 32P incorporation into the AT1A receptor. To investigate the correlation between receptor phosphorylation and endocytosis, an epitope-tagged mutant receptor was produced, in which the carboxyl-terminal residues, Thr332, Ser335, Thr336, and Ser338, previously identified as important for receptor internalization, were substituted with alanine. Compared with the wild-type receptor, this mutant displayed a clear reduction in Ang II-stimulated phosphorylation. Such a correlation was further strengthened by the novel observation that the Ang II peptide antagonist, Sar(1)Ile8-Ang II, which paradoxically causes internalization of wild-type AT1A receptors, also promoted their phosphorylation. In an attempt to directly relate phosphorylation of the carboxyl terminus to endocytosis, the internalization kinetics of wild-type AT1A receptors and receptors mutated within the Thr332-Ser338 region were compared. The four putative phosphorylation sites (Thr332, Ser335, Thr336, and Ser338) were substituted with either neutral [alanine (A)] or acidic amino acids [glutamic acid (E) and aspartic acid (D)], the former to prevent phosphorylation and the latter to reproduce the acidic charge created by phosphorylation. Wild-type AT1A receptors, expressed in Chinese hamster ovary cells, rapidly internalized after Ang II stimulation [t1/2 2.3 min; maximal level of internalization (Ymax) 78.2%], as did mutant receptors carrying single acidic substitutions (T332E, t1/2 2.7 min, Ymax 76.3%; S335D, t1/2 2.4 min, Ymax 76.7%; T336E, t1/2 2.5 min, Ymax 78.2%; S338D, t1/2 2.6 min, Ymax 78.4%). While acidic amino acid substitutions may simply be not as structurally disruptive as alanine mutations, we interpret the tolerance of a negative charge in this region as suggestive that phosphorylation may permit maximal internalization. Substitution of all four residues to alanine produced a receptor with markedly reduced internalization kinetics (T332A/S335A/T336A/S338A, t1/2 10.1 min, Ymax 47.9%), while endocytosis was significantly rescued in the corresponding quadruple acidic mutant (T332E/S335D/T336E/S338D, t1/2 6.4 min, Ymax 53.4%). Double mutation of S335 and T336 to alanine also diminished the rate and extent of endocytosis (S335A/T336A, 3.9 min, Ymax 69.3%), while the analogous double acidic mutant displayed wild type-like endocytotic parameters (S335D/T336E, t1/2 2.6 min, Ymax 77.5%). Based on the apparent rescue of internalization by acidic amino acid substitutions in a region that we have identified as a site of Ang II-induced phosphorylation, we conclude that maximal endocytosis of the AT1A receptor requires phosphorylation within this serine/threonine-rich segment of the carboxyl terminus.

摘要

血管紧张素II 1型受体(AT1)内吞作用的分子机制尚不清楚,尽管在AT1A受体亚型的羧基末端鉴定出一个重要的富含丝氨酸/苏氨酸的区域(Thr332Lys333Met334Ser335Thr336Leu337Ser338),提示磷酸化可能参与其中。在本研究中,我们检测了全长AT1A受体的磷酸化和内化,并将其与羧基末端截短和突变的受体进行比较。当表位标记的全长AT1A受体瞬时转染到中国仓鼠卵巢(CHO)-K1细胞中时,显示出基础磷酸化水平,血管紧张素II(Ang II)刺激可使其显著增强。通过羧基末端的系列截短,AT1A受体的磷酸化逐渐降低,截短至Lys325(去除最后34个氨基酸)几乎完全抑制了Ang II刺激的32P掺入AT1A受体。为了研究受体磷酸化与内吞作用之间的相关性,构建了一个表位标记的突变受体,其中先前确定对受体内化重要的羧基末端残基Thr332、Ser335、Thr336和Ser338被丙氨酸取代。与野生型受体相比,该突变体在Ang II刺激下的磷酸化明显降低。血管紧张素II肽拮抗剂Sar(1)Ile8-Ang II反常地导致野生型AT1A受体的内化,同时也促进其磷酸化,这一新发现进一步加强了这种相关性。为了直接将羧基末端的磷酸化与内吞作用联系起来,比较了野生型AT1A受体和在Thr332-Ser338区域内突变的受体的内化动力学。四个假定的磷酸化位点(Thr332、Ser335、Thr336和Ser338)被中性氨基酸[丙氨酸(A)]或酸性氨基酸[谷氨酸(E)和天冬氨酸(D)]取代,前者用于阻止磷酸化,后者用于重现磷酸化产生的酸性电荷。在中国仓鼠卵巢细胞中表达的野生型AT1A受体在Ang II刺激后迅速内化[t1/2 2.3分钟;最大内化水平(Ymax)78.2%],携带单个酸性取代的突变受体也是如此(T332E,t1/2 2.7分钟,Ymax 76.3%;S335D,t1/2 2.4分钟,Ymax 76.7%;T336E,t1/2 2.5分钟,Ymax 78.2%;S338D,t1/2 2.6分钟,Ymax 78.4%)。虽然酸性氨基酸取代可能在结构上不像丙氨酸突变那样具有破坏性,但我们将该区域对负电荷的耐受性解释为提示磷酸化可能允许最大程度的内化。将所有四个残基都替换为丙氨酸产生了一个内化动力学明显降低的受体(T332A/S335A/T336A/S338A,t1/2 10.1分钟,Ymax 47.9%),而在相应的四重酸性突变体(T332E/S335D/T336E/S338D,t1/2 6.4分钟,Ymax 53.4%)中内吞作用得到显著挽救。S335和T336双重突变为丙氨酸也降低了内吞作用的速率和程度(S335A/T336A,3.9分钟,Ymax 69.3%),而类似的双重酸性突变体显示出野生型样的内吞参数(S335D/T336E,t1/2 2.6分钟,Ymax 77.5%)。基于我们确定为Ang II诱导磷酸化位点的区域中酸性氨基酸取代对内化的明显挽救作用,我们得出结论,AT1A受体的最大程度内吞需要在羧基末端的这个富含丝氨酸/苏氨酸的片段内进行磷酸化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验