Karnik Sadashiva S, Unal Hamiyet, Kemp Jacqueline R, Tirupula Kalyan C, Eguchi Satoru, Vanderheyden Patrick M L, Thomas Walter G
Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.).
Pharmacol Rev. 2015 Oct;67(4):754-819. doi: 10.1124/pr.114.010454.
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
肾素血管紧张素系统(RAS)产生的激素肽调节着许多重要的身体功能。RAS肽受体的信号传导功能失调会导致病理状态。如今,近一半的人可能会从针对这些受体的现代药物中受益。RAS肽受体包括三种G蛋白偶联受体——血管紧张素II 1型受体(AT1受体)、血管紧张素II 2型受体(AT2受体)、MAS受体——以及一种II型跨膜锌蛋白——候选血管紧张素IV受体(血管紧张素IV结合位点)。肾素原受体是一个相对较新的需要考虑的对象,但此处未将其纳入,因为肾素原受体作为独立内分泌介质的作用目前尚不清楚。这些受体的全部生物学特性仍在不断演变,但有证据表明每个受体在心血管、血流动力学、神经、肾脏和内皮功能以及细胞增殖、存活、基质-细胞相互作用和炎症中都发挥着独特作用。针对这些受体的治疗药物要么已在主要常见疾病的临床干预中积极使用,要么正在接受评估,以用于许多其他疾病的重新利用。这些受体在我们身体复杂的病理生理环境中产生的广泛影响突出了它们作为独特血管紧张素能肽信号精确解读器的作用。这篇综述文章总结了过去15年中发表的关于与血管紧张素受体相关的结构、药理学、信号传导、生理学和疾病状态的研究结果。我们还讨论了药理学家目前在正式接受新成员作为既定血管紧张素受体时面临的挑战,并强调了未来必要的发展方向。