Suppr超能文献

Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm. Implications for protein repair.

作者信息

Szymanska G, Leszyk J D, O'Connor C M

机构信息

Department of Biology, Boston College, Chestnut Hill, Massachusetts 02167-3811, USA.

出版信息

J Biol Chem. 1998 Oct 23;273(43):28516-23. doi: 10.1074/jbc.273.43.28516.

Abstract

The widely distributed protein-L-isoaspartate(D-aspartate) O-methyltransferase (PIMT; EC 2.1.1.77) is postulated to play a role in the repair or metabolism of damaged cellular proteins containing L-isoaspartyl residues derived primarily from the spontaneous deamidation of protein asparaginyl residues. To evaluate the functional consequence of PIMT-catalyzed methylation on the stability of isoaspartyl-containing proteins in cells, Xenopus laevis oocytes were microinjected with both deamidated and nondeamidated forms of recombinant chicken calmodulin (CaM) containing a hemagglutinin (HA) epitope at its N terminus. Processing of HA-CaM was monitored by electrophoretic analysis and Western blotting of oocyte extracts. The experiments indicate that deamidated HA-CaM is degraded after microinjection, while nondeamidated HA-CaM is stable. Kinetic analysis is consistent with the entry of microinjected HA-CaM into two intracellular pools with distinct hydrolytic stabilities. The larger, more stable pool may consist of HA-CaM bound to the heterogeneous pool of oocyte CaM binding proteins detected by an overlay procedure. Enzymatic methylation of deamidated HA-CaM with purified PIMT prior to injection results in its stabilization. Conversely, inhibition of endogenous oocyte PIMT with sinefungin, a nonhydrolyzable analog of S-adenosylhomocysteine, increases the rate of deamidated HA-CaM degradation. These results are consistent with a role for PIMT-catalyzed methylation in the repair of damaged cellular proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验