Lopez B L, Snyder J W, Birenbaum D S, Ma X I
Department of Surgery, Jefferson Medical College, Philadelphia, PA, USA.
Ann Emerg Med. 1998 Oct;32(4):405-10. doi: 10.1016/s0196-0644(98)70167-2.
Previous studies have suggested that N-acetylcysteine (NAC) may confer additional protection in acetaminophen (APAP) overdose by improving hepatic microcirculation. We hypothesize that NAC enhances release of nitric oxide (NO) from the vasculature.
Sprague-Dawley rat superior mesenteric artery rings were suspended in oxygenated Krebs-Henseleit tissue baths and contracted with U-46619 (a thromboxane A2-mimetic). In part 1, the effect of NAC on endothelial cell (EC) release of NO was assessed by measurement of vasorelaxation induced by acetylcholine (ACh, an EC-dependent vasorelaxor) in the presence and absence of NAC. In part 2, the effect of glutathione (a major component of NAC hepatoprotection) was examined by measuring ACh-induced vasorelaxation in rings from rats treated with L-buthionine sulfoxamine (BSO, a glutathione synthesis inhibitor). Data were analyzed by repeated-measures ANOVA.
Addition of 15 to 30 mmol/L NAC after ring contraction had no direct vasodilatory effect. By contrast, pretreatment of rings with NAC (15 mmol/L) enhanced vasorelaxation induced by ACh (95.0% +/- 7.9% versus 62.3% +/- 7.6% for control; ACh dose, 1 mumol/L; P < .001) or by A23187, a receptor-independent, NO-mediated vasodilator (91.6% +/- 9.6% versus 68.3% +/- 12.1% for control; A23187 dose, 1 mumol/L; P < .001). In rings from BSO-treated rats, NAC also enhanced vasorelaxation (76.5% +/- 7.1%; P < .001 versus control), but to a lesser degree than in nontreated rats.
NAC enhances endothelium-dependent vasodilation in an isolated rat mesenteric artery ring preparation. In addition to its antioxidant effects, NAC may decrease APAP hepatotoxicity by stimulating NO production and improving microvascular circulation.