Suppr超能文献

从前列腺CT数据集中自动定位种子。

Automated seed localization from CT datasets of the prostate.

作者信息

Brinkmann D H, Kline R W

机构信息

Division of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

Med Phys. 1998 Sep;25(9):1667-72. doi: 10.1118/1.598346.

Abstract

With the increasing utilization of permanent brachytherapy implants for treating carcinoma of the prostate, the importance of accurate post-treatment dose calculation also increases for assessing patient outcome and planning future treatments. An automatic method for seed localization of permanent brachytherapy implants, using CT datasets of the prostate, has been developed and tested on a phantom using an actual patient planned seed distribution. This method was also compared to results with the three-film technique for three patient datasets. The automatic method is as accurate or more accurate than the three film technique for 1 mm, 3 mm, and 5 mm contiguous CT slices, and eliminates the inter- and intra-observer variability of the manual methods. The automated method improves the localization of brachytherapy seeds while reducing the time required for the user to input information, and is demonstrated to be less operator dependent, less time consuming, and potentially more accurate than the three-film technique.

摘要

随着永久性近距离放射治疗植入物在前列腺癌治疗中的应用日益增加,准确的治疗后剂量计算对于评估患者预后和规划未来治疗也变得越发重要。一种利用前列腺CT数据集对永久性近距离放射治疗植入物进行籽源定位的自动方法已被开发出来,并在体模上使用实际患者计划的籽源分布进行了测试。该方法还与三个患者数据集的三胶片技术结果进行了比较。对于1毫米、3毫米和5毫米连续CT切片,该自动方法与三胶片技术一样准确或更准确,并且消除了手动方法中观察者之间和观察者内部的变异性。该自动化方法改善了近距离放射治疗籽源的定位,同时减少了用户输入信息所需的时间,并且被证明比三胶片技术更少依赖操作员、耗时更少且可能更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验