Verotta D
Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco 94143, USA.
Ann Biomed Eng. 1998 Sep-Oct;26(5):870-82. doi: 10.1114/1.110.
The identification of the input to, or kernels of, a system using nonparametric representations and least-squares estimation is becoming increasingly popular. Nonparametric representations avoid making a priori assumptions about the input or having detailed knowledge about the system, and only need to guarantee known general characteristics (for example, positivity), which are obtained through the imposition of constraints on the estimates. An often overlooked problem is how to characterize the variability of the estimates so obtained. This problem is caused by the presence of constraints--and/or the nonlinearities of the estimates, or the complexity of the (regression based) estimation algorithms used--which make standard methods of estimating variability incorrect. In this article we investigate the use of a resampling technique called the "bootstrap" to obtain the desired estimates of variability. We present real data analysis demonstrating the approach, and through simulations we test the performance of a novel bootstrap technique obtaining confidence bands for the estimated functions.
使用非参数表示和最小二乘估计来识别系统的输入或核正变得越来越流行。非参数表示避免对输入做出先验假设或拥有关于系统的详细知识,并且只需要保证通过对估计施加约束而获得的已知一般特征(例如,正性)。一个经常被忽视的问题是如何表征如此获得的估计的变异性。这个问题是由约束的存在——和/或估计的非线性,或所使用的(基于回归的)估计算法的复杂性——导致的,这使得估计变异性的标准方法不正确。在本文中,我们研究使用一种称为“自助法”的重采样技术来获得所需的变异性估计。我们展示了实际数据分析以证明该方法,并通过模拟测试了一种为估计函数获得置信带的新型自助法技术的性能。