Taylor P, Osaka H, Molles B E, Sugiyama N, Marchot P, Ackermann E J, Malany S, McArdle J J, Sine S M, Tsigelny I
Department of Pharmacology, University of California, San Diego, La Jolla 92093, USA.
J Physiol Paris. 1998 Apr;92(2):79-83. doi: 10.1016/S0928-4257(98)80142-3.
The pentameric structure of the nicotinic acetylcholine receptor with two of the five subunit interfaces serving as ligand binding sites offers an opportunity to distinguish features on the surfaces of the subunits and their ligand specificity characteristics. This problem has been approached through the study of assembly of subunits and binding characteristics of selective peptide toxins. The receptor, with its circular order of homologous subunits (alpha gamma alpha delta beta), assembles in only one arrangement, and through mutagenesis, the residues governing assembly can be ascertained. Selectivity of certain toxins is sufficient to readily distinguish between sites at the alpha gamma and alpha delta interfaces. By interchanging residues on the gamma and delta subunits, and ascertaining how they interact with the alpha-subunit, determinants forming the binding sites can be delineated. The alpha-conotoxins, which contain two disulfide loops and 12-14 amino acids, show a 10,000-fold preference for the alpha delta over the alpha gamma subunit interface with alpha epsilon falling between the two. The waglerins, as 22-24 amino acid peptides with a single core disulfide loop, show a 2000-fold preference for alpha epsilon over the alpha gamma and alpha delta interfaces. Finally, the 6700 Da short alpha-neurotoxin from N. mossambica mossambica shows a 10,000-fold preference for the alpha gamma and alpha delta interfaces over alpha epsilon. Selective mutagenesis enables one to also distinguish alpha-neurotoxin binding at the alpha gamma and alpha delta subunits. This information, when coupled with homology modeling of domains and site-directed residue modification, reveals important elements of receptor structure and conformation.
烟碱型乙酰胆碱受体的五聚体结构有五个亚基界面,其中两个作为配体结合位点,这为区分亚基表面特征及其配体特异性特征提供了契机。这个问题已通过研究亚基组装和选择性肽毒素的结合特性来解决。该受体具有同源亚基的环状排列(αγ αδ β),仅以一种排列方式组装,通过诱变可以确定控制组装的残基。某些毒素的选择性足以轻松区分αγ和αδ界面处的位点。通过交换γ和δ亚基上的残基,并确定它们与α亚基的相互作用方式,可以描绘出形成结合位点的决定因素。含有两个二硫键环和12 - 14个氨基酸的α - 芋螺毒素对αδ亚基界面的偏好是αγ亚基界面的10000倍,αε亚基界面的偏好介于两者之间。瓦格勒毒素作为具有单个核心二硫键环的22 - 24个氨基酸的肽,对αε亚基界面的偏好是αγ和αδ亚基界面的2000倍。最后,来自莫桑比克莫桑比克眼镜蛇的6700 Da短α - 神经毒素对αγ和αδ亚基界面的偏好是αε亚基界面的10000倍。选择性诱变还能使人区分α - 神经毒素在αγ和αδ亚基上的结合。这些信息与结构域的同源建模和定点残基修饰相结合,揭示了受体结构和构象的重要元素。