Parry M A, Fernandez-Catalan C, Bergner A, Huber R, Hopfner K P, Schlott B, Gührs K H, Bode W
Max-Planck Institute of Biochemistry, Department for Structural Research, Martinsried, Germany.
Nat Struct Biol. 1998 Oct;5(10):917-23. doi: 10.1038/2359.
The serine proteinase plasmin is the key fibrinolytic enzyme that dissolves blood clots and also promotes cell migration and tissue remodeling. Here, we report the 2.65 A crystal structure of a ternary complex of microplasmin-staphylokinase bound to a second microplasmin. The staphylokinase 'cofactor' does not affect the active-site geometry of the plasmin 'enzyme', but instead modifies its subsite specificity by providing additional docking sites for enhanced presentation of the plasminogen 'substrate' to the 'enzymes's' active site. The activation loop of the plasmin 'substrate', cleaved in these crystals, can be reconstructed to show how it runs across the active site of the plasmin 'enzyme' prior to activation cleavage. This is the first experimental structure of a productive proteinase-cofactor-macromolecular substrate complex. Furthermore, it provides a template for the design of improved plasminogen activators and plasmin inhibitors with considerable therapeutical potential.
丝氨酸蛋白酶纤溶酶是溶解血栓的关键纤维蛋白溶解酶,还能促进细胞迁移和组织重塑。在此,我们报告了微纤溶酶-葡萄球菌激酶与第二个微纤溶酶结合的三元复合物的2.65埃晶体结构。葡萄球菌激酶“辅因子”不影响纤溶酶“酶”的活性位点几何结构,而是通过提供额外的对接位点来改变其亚位点特异性,从而增强纤溶酶原“底物”向“酶”活性位点的呈递。在这些晶体中被切割的纤溶酶“底物”的激活环可以重建,以显示其在激活切割之前如何穿过纤溶酶“酶”的活性位点。这是有活性的蛋白酶-辅因子-大分子底物复合物的首个实验结构。此外,它为设计具有相当治疗潜力的改良纤溶酶原激活剂和纤溶酶抑制剂提供了模板。