Suppr超能文献

Effect of deletion of the major brain G-protein alpha subunit (alpha(o)) on coordination of G-protein subunits and on adenylyl cyclase activity.

作者信息

Mende U, Zagrovic B, Cohen A, Li Y, Valenzuela D, Fishman M C, Neer E J

机构信息

Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

J Neurosci Res. 1998 Oct 15;54(2):263-72. doi: 10.1002/(SICI)1097-4547(19981015)54:2<263::AID-JNR14>3.0.CO;2-5.

Abstract

Heterotrimeric G-proteins, composed of alpha and betagamma subunits, transmit signals from cell-surface receptors to cellular effectors and ion channels. Cellular responses to receptor agonists depend on not only the type and amount of G-protein subunits expressed but also the ratio of alpha and betagamma subunits. Thus far, little is known about how the amounts of alpha and betagamma subunits are coordinated. Targeted disruption of the alpha(o) gene leads to loss of both isoforms of alpha(o), the most abundant alpha subunit in the brain. We demonstrate that loss of alpha(o) protein in the brain is accompanied by a reduction of beta protein to 32+/-2% (n = 4) of wild type. Sucrose density gradient experiments show that all of the betagamma remaining in the brains of alpha(o)-/- mice sediments as a heterotrimer (s20,w = 4.4 S, n = 2), with no detectable free alpha or betagamma subunits. Thus, the level of the remaining betagamma subunits matches that of the remaining alpha subunits. Protein levels of alpha subunits other than alpha(o) are unchanged, suggesting that they are controlled independently. Coordination of betagamma to alpha occurs posttranscriptionally because the mRNA level of the predominant beta1 subtype in the brains of alpha(o)-/- mice was unchanged. Adenylyl cyclase can be positively or negatively regulated by betagamma. Because the level of other alpha subunits is unchanged and alpha(o) itself has little or no effect on adenylyl cyclase, we could examine how a large change in the level of betagamma affects this enzyme. Surprisingly, we could not detect any difference in the adenylyl cyclase activity between brain membranes from wild-type and alpha(o)-/- mice. We propose that alpha(o) and its associated betagamma are sequestered in a distinct pool of membranes that does not contribute to the regulation of adenylyl cyclase.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验