Shapiro A B, Ling V
British Columbia Cancer Research Centre, Vancouver, Canada.
Acta Physiol Scand Suppl. 1998 Aug;643:227-34.
Experiments with purified P-glycoprotein (Pgp) reconstituted into proteoliposomes have conclusively demonstrated that Pgp is an ATP-dependent drug transporter. Detailed biochemical analyses of drug transport by Pgp are beginning to yield a clearer picture of its mechanism. Working with Pgp-rich plasma membrane vesicles from CHRB30 cells, we have recently clarified several aspects of the drug transport mechanism. A major question about drug transport by Pgp is how it can recognize a vast array of unrelated chemical compounds as substrates. The substrate Hoechst 33342 is fluorescent in the lipid bilayer but not in aqueous solution. This property enabled us to show that Pgp transports Hoechst 33342 out of the lipid bilayer, not the aqueous phase. Because Hoechst 33342, like all Pgp substrates, is lipophilic its concentration in the bilayer greatly exceeds its concentration in the aqueous medium. High local substrate concentrations may allow for broad substrate recognition by one or more relatively low affinity binding site(s) within the lipid bilayer. Another fundamental question about Pgp is the number of drug binding sites it possesses. We have found evidence for at least two sites for drug binding and transport that interact in a positively cooperative manner. Initial rates of transport of two Pgp substrates, Hoechst 33342 and Rhodamine 123 by ChRB30 plasma membrane vesicles were measured. Each dye stimulated transport of the other. Additionally, colchicine stimulated Rhodamine 123 transport and inhibited Hoechst 33342 transport. Anthracyclines such as daunorubicin and doxorubicin had the reverse effect. Vinblastine, etoposide, and actinomycin D inhibited transport of both dyes. We interpret these results as follows. One site (R) preferentially recognizes Rhodamine 123, doxorubicin and daunorubicin. The other site (H) preferentially recognizes Hoechst 33342 and colchicine. Vinblastine, actinomycin D, and etoposide interact equally with both sites. Binding of drug at the R site stimulates transport of Hoechst 33342 by the H site and binding of drug at the H site stimulates transport of Rhodamine 123 by the R site. The existence of two drug binding sites on Pgp with different specificities is another way in which Pgp may expand the range of substrates it can transport. A third essential detail of the drug transport mechanism of Pgp is the ratio of substrate molecules transported per ATP hydrolyzed. By comparing the initial rate of Rhodamine 123 transport with the rate of ATP hydrolysis at saturating Rhodamine 123 concentration, we found that, under suitable conditions, Pgp is capable of transporting one Rhodamine 123 molecule per ATP molecule hydrolyzed.
将纯化的P - 糖蛋白(Pgp)重组到蛋白脂质体中的实验已确凿地证明Pgp是一种ATP依赖性药物转运蛋白。对Pgp介导的药物转运进行的详细生化分析开始更清晰地揭示其机制。利用来自CHRB30细胞的富含Pgp的质膜囊泡,我们最近阐明了药物转运机制的几个方面。关于Pgp介导的药物转运的一个主要问题是它如何能将大量不相关的化合物识别为底物。底物Hoechst 33342在脂质双层中具有荧光,但在水溶液中没有。这一特性使我们能够证明Pgp将Hoechst 33342从脂质双层转运出去,而不是从水相中转运。由于Hoechst 33342与所有Pgp底物一样具有亲脂性,其在双层中的浓度大大超过其在水相介质中的浓度。高局部底物浓度可能允许脂质双层内一个或多个相对低亲和力的结合位点广泛识别底物。关于Pgp的另一个基本问题是它拥有的药物结合位点数量。我们发现了至少两个药物结合和转运位点的证据,它们以正协同方式相互作用。测量了ChRB30质膜囊泡对两种Pgp底物Hoechst 33342和罗丹明123的初始转运速率。每种染料都刺激了另一种染料的转运。此外,秋水仙碱刺激罗丹明123的转运并抑制Hoechst 33342的转运。阿霉素如柔红霉素和阿霉素则有相反的作用。长春碱、依托泊苷和放线菌素D抑制两种染料的转运。我们对这些结果的解释如下。一个位点(R)优先识别罗丹明123、阿霉素和柔红霉素。另一个位点(H)优先识别Hoechst 33342和秋水仙碱。长春碱、放线菌素D和依托泊苷与两个位点的相互作用相同。药物在R位点的结合刺激H位点对Hoechst 33342的转运,药物在H位点的结合刺激R位点对罗丹明123的转运。Pgp上存在两个具有不同特异性的药物结合位点是Pgp扩大其可转运底物范围的另一种方式。Pgp药物转运机制中的第三个重要细节是每水解一个ATP所转运的底物分子的比例。通过比较罗丹明123饱和浓度下的初始转运速率与ATP水解速率,我们发现,在合适的条件下,Pgp每水解一个ATP分子能够转运一个罗丹明123分子。