Suppr超能文献

体内13C核磁共振波谱法和气液色谱法在脂肪组织成分研究中的批判性评估。

Critical assessment of in vivo 13C NMR spectroscopy and gas-liquid chromatography in the study of adipose tissue composition.

作者信息

Thomas E L, Cunnane S C, Bell J D

机构信息

The Robert Steiner MR Unit, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK.

出版信息

NMR Biomed. 1998 Oct;11(6):290-6. doi: 10.1002/(sici)1099-1492(199810)11:6<290::aid-nbm524>3.0.co;2-n.

Abstract

Routine measurement of adipose tissue composition by repeated biopsy invokes both ethical and practical difficulties, limiting long-term serial studies of adipose tissue composition. In vivo 13C nuclear magnetic resonance (NMR) spectroscopy has been applied as a non-invasive alternative, although it has not as yet been fully validated. In this study we critically assess in vivo 13C NMR spectroscopy and gas-liquid chromatography for the analysis of adipose tissue composition. The advantages and drawbacks of both methods are discussed, in particular to the study of adipose tissue during dietary manipulation and development. Our results show that the NMR measurements of adipose tissue composition are highly reproducible, but they can significantly differ froM those obtained by gas-liquid chromatography (GLC) from the same volunteer. We show that the discrepancy between these two techniques arises from inherent limitations of both 13C NMR spectroscopy and GLC. Finally, we show that 13C NMR spectroscopy remains a useful non-invasive tool for the study of adipose tissue, and will enable us to perform long-term serial studies to further our knowledge of lipid metabolism.

摘要

通过重复活检对脂肪组织成分进行常规测量会引发伦理和实际操作方面的困难,限制了对脂肪组织成分的长期系列研究。体内13C核磁共振(NMR)光谱已作为一种非侵入性替代方法应用,尽管尚未得到充分验证。在本研究中,我们严格评估了体内13C NMR光谱和气液色谱法用于分析脂肪组织成分的情况。讨论了这两种方法的优缺点,特别是在饮食干预和发育过程中对脂肪组织的研究。我们的结果表明,脂肪组织成分的NMR测量具有高度可重复性,但与同一志愿者通过气液色谱法(GLC)获得的结果可能存在显著差异。我们表明,这两种技术之间的差异源于13C NMR光谱法和GLC的固有局限性。最后,我们表明13C NMR光谱仍然是研究脂肪组织的一种有用非侵入性工具,将使我们能够进行长期系列研究,以进一步了解脂质代谢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验