Alvarez-Guerra M, Nazaret C, Garay R P
INSERM U400, Faculté de Médecine, Créteil, France.
J Hypertens. 1998 Oct;16(10):1499-504. doi: 10.1097/00004872-199816100-00015.
Abnormal Na,K,Cl cotransport is thought to be a pathogenic factor in Dahl salt-sensitive rat models, but the only direct evidence for this is an increased cotransport activity found in erythrocytes from salt-loaded Dahl salt-sensitive rats.
To re-examine erythrocyte cotransport fluxes and a circulating cotransport inhibitory factor (CIF) in inbred Dahl rats maintained on a low (0.2%) salt diet. Cotransport fluxes were investigated both under basal conditions and after stimulation by cell shrinking.
Blood was drawn from 12 male Dahl salt-sensitive and 12 Dahl salt-resistant rats of the inbred John Rapp strain. Erythrocyte Na,K,Cl cotransport activity was equated to the bumetanide-sensitive fluxes of sodium, rubidium or lithium. Plasma CIF activity was tested in human erythrocytes.
In Dahl salt-sensitive rats: (1) plasma CIF activity (5.7+/-0.4 units/ml) was modestly higher than in Dahl salt-resistant rats (2.97+/-0.12 units/ml, P < 0.0001), but much lower than that previously found in salt-loaded Dahl salt-sensitive rats (16.1 units/ml), and (2) erythrocytes exhibited a similar bumetanide-sensitive sodium efflux (rate constant 0.056+/-0.008 h(-1)) as in Dahl salt-resistant rats (0.047+/-0.007 h(-1)). Following hypertonic shock, the bumetanide-sensitive rubidium influx reacted more to cell shrinkage in Dahl salt-sensitive than in Dahl salt-resistant erythrocytes (cell volume decrease required to stimulate bumetanide-sensitive rubidium influx by 4000 micromol/l cells per h=-4.04+/-0.36 versus -5.89+/-0.44 fl, respectively; P< 0.01).
When fed a low-salt diet, Dahl salt-sensitive rats present slightly increased plasma CIF levels and normal erythrocyte cotransport fluxes under basal conditions, but an increased response to a hypertonic shock. Therefore, if there is any primary cotransport abnormality in Dahl salt-sensitive rats, it appears to be restricted to the renal Na,K,Cl cotransporter BSC1 isoform. Alternatively, any such change may be the consequence of abnormal regulation by osmolarity-dependent mechanisms.
钠钾氯协同转运异常被认为是 Dahl 盐敏感大鼠模型中的一个致病因素,但对此唯一的直接证据是在高盐负荷的 Dahl 盐敏感大鼠的红细胞中发现协同转运活性增加。
重新检测维持在低(0.2%)盐饮食的近交系 Dahl 大鼠的红细胞协同转运通量和循环协同转运抑制因子(CIF)。在基础条件下以及细胞收缩刺激后研究协同转运通量。
从近交系 John Rapp 品系的 12 只雄性 Dahl 盐敏感大鼠和 12 只 Dahl 盐抵抗大鼠采集血液。红细胞钠钾氯协同转运活性等同于布美他尼敏感的钠、铷或锂通量。在人红细胞中检测血浆 CIF 活性。
在 Dahl 盐敏感大鼠中:(1)血浆 CIF 活性(5.7±0.4 单位/毫升)略高于 Dahl 盐抵抗大鼠(2.97±0.12 单位/毫升,P<0.0001),但远低于先前在高盐负荷的 Dahl 盐敏感大鼠中发现的水平(16.1 单位/毫升),并且(2)红细胞表现出与 Dahl 盐抵抗大鼠(0.047±0.007 小时-1)相似的布美他尼敏感的钠外流(速率常数 0.056±0.008 小时-1)。在高渗休克后,Dahl 盐敏感大鼠的红细胞中布美他尼敏感的铷内流对细胞收缩的反应比 Dahl 盐抵抗大鼠的红细胞更明显(刺激布美他尼敏感的铷内流达到每小时 4000 微摩尔/升细胞所需的细胞体积减少分别为-4.04±0.36 与-5.89±0.44 飞升;P<0.01)。
当给予低盐饮食时,Dahl 盐敏感大鼠在基础条件下血浆 CIF 水平略有升高,红细胞协同转运通量正常,但对高渗休克的反应增强。因此,如果 Dahl 盐敏感大鼠存在任何原发性协同转运异常,似乎仅限于肾钠钾氯协同转运体 BSC1 亚型。或者,任何此类变化可能是渗透压依赖性机制异常调节的结果。