Suppr超能文献

单极电图中的多个成分:心室心肌三维模型的模拟研究

Multiple components in the unipolar electrogram: a simulation study in a three-dimensional model of ventricular myocardium.

作者信息

Taccardi B, Veronese S, Franzone P C, Guerri L

机构信息

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City 84112-5000, USA.

出版信息

J Cardiovasc Electrophysiol. 1998 Oct;9(10):1062-84. doi: 10.1111/j.1540-8167.1998.tb00884.x.

Abstract

INTRODUCTION

For many decades, the interpretation of unipolar electrograms (EGs) and ECGs was based on simple models of the heart as a current generator, e.g., the uniform dipole layer, and, more recently, the "oblique dipole layer." However, a number of recent and old experimental data are inconsistent with the predictions of these models. To address this problem, we implemented a numerical model simulating the spread of excitation through a parallelepipedal myocardial slab, with a view to identifying the factors that affect the shape, amplitude, and polarity of unipolar EGs generated by the spreading wavefront.

METHODS AND RESULTS

The numerical model represents a portion of the left ventricular wall as a parallelepipedal slab (6.5 x 6.5 x 1 cm); the myocardial tissue is represented as an anisotropic bidomain with epi-endocardial rotation of fiber direction and unequal anisotropy ratio. Following point stimulation, excitation times in the entire volume are computed by using an eikonal formulation. Potential distributions are computed by assigning a fixed shape to the action potential profile. EGs at multiple sites in the volume are computed from the time varying potential distributions. The simulations show that the unipolar QRS waveforms are the sum of a "field" component, representing the effect of an approaching or receding wavefront on the potential recorded by a unipolar electrode, and a previously unrecognized "reference" component, which reflects the drift, during the spread of excitation, of the reference potential, which moves from near the positive to near the negative extreme of the potential distribution during the spread of excitation.

CONCLUSION

The drift of the reference potential explains the inconsistencies between the predictions of the models and the actual shapes of the EGs. The drift modifies the slopes of EG waveforms during excitation and recovery and can be expected to affect the assessment of excitation and recovery times and QRS and ST-T areas. Removing the drift reestablishes consistency between potential distributions and electrographic waveforms.

摘要

引言

几十年来,单极电图(EGs)和心电图(ECGs)的解释一直基于心脏作为电流发生器的简单模型,例如均匀偶极层,以及最近的“倾斜偶极层”。然而,许多近期和以往的实验数据与这些模型的预测不一致。为了解决这个问题,我们实施了一个数值模型,模拟兴奋通过平行六面体心肌板的传播,以确定影响传播波前产生的单极EGs的形状、幅度和极性的因素。

方法与结果

该数值模型将左心室壁的一部分表示为平行六面体板(6.5×6.5×1厘米);心肌组织表示为各向异性双域,纤维方向有内膜 - 外膜旋转且各向异性比率不等。在点刺激后,使用程函方程公式计算整个体积内的兴奋时间。通过为动作电位轮廓指定固定形状来计算电位分布。根据随时间变化的电位分布计算体积内多个部位的EGs。模拟结果表明,单极QRS波形是一个“场”分量的总和,该分量代表接近或远离的波前对单极电极记录的电位的影响,以及一个先前未被认识的“参考”分量,它反映了在兴奋传播过程中参考电位的漂移,在兴奋传播过程中,参考电位从电位分布的正极性端附近移动到负极性端附近。

结论

参考电位的漂移解释了模型预测与EGs实际形状之间的不一致。这种漂移在兴奋和恢复过程中改变了EG波形的斜率,并且可以预期会影响兴奋和恢复时间以及QRS和ST - T面积的评估。消除漂移可重新建立电位分布与电图波形之间的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验