Suppr超能文献

通过酰基肉碱分析对人成纤维细胞中植烷酸和降植烷酸氧化的研究。

Studies on the oxidation of phytanic acid and pristanic acid in human fibroblasts by acylcarnitine analysis.

作者信息

Verhoeven N M, Jakobs C, ten Brink H J, Wanders R J, Roe C R

机构信息

Department of Clinical Chemistry, Free University Hospital, Amsterdam, The Netherlands.

出版信息

J Inherit Metab Dis. 1998 Oct;21(7):753-60. doi: 10.1023/a:1005449200468.

Abstract

The alpha-oxidation of phytanic acid and the beta-oxidation of pristanitc acid were investigated in cultured fibroblasts from controls and patients affected with different peroxisomal disorders using deuterated substrates. Formation of [omega-2H6]4,8-dimethylnonanoylcarnitine ([omega-2H6]C11-carnitine) from [omega-2H6]phytanic acid and [omega-2H6]pristanic acid was used as marker for these processes. Analysis was performed by tandem mass spectrometry. In normal cells, formation of [omega-2H6]C11-carnitine from both [omega-2H6]phytanic acid and [omega-2H6]pristanic acid was observed. When peroxisome-deficient fibroblasts were incubated with these substrates, [omega-2H6]C11-carnitine was not detectable or, in two cases, very low, which results from deficiencies in both peroxisomal alpha- and beta-oxidation. In cells with an isolated beta-oxidation defect at the level of the peroxisomal bifunctional protein, formation of [omega-2H6]C11-carnitine could also not be detected. Cells with an isolated defect in the alpha-oxidation of phytanic acid, obtained from patients affected with Refsum disease (McKusick 266500) or rhizomelic chondrodysplasia punctata (McKusick 215100), did not form [omega-2H6]C11-carnitine from [omega-2H6]phytanic acid. The observed formation of [omega-2H6]C11-carnitine from [omega-2H6]pristanic acid in these cells is in accordance with a normal peroxisomal beta-oxidation in these disorders. This study shows that separate incubation of fibroblasts with [omega-2H6]phytanic acid and [omega-2H6]pristanic acid, followed by acylcarnitine analysis in the medium by tandem mass spectrometry, can be used for screening cell lines for deficiencies in the peroxisomal alpha- and beta-oxidation pathways. Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) and pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) are branched-chain fatty acids that are constituents of the human diet. As phytanic acid possesses a beta-methyl group, it cannot be degraded by beta-oxidation. Instead, phytanic acid is first degraded by alpha-oxidation, yielding pristanic acid, which is subsequently degraded by beta-oxidation (Figure 1). Phytanic acid alpha-oxidation is thought to occur partly, and pristanic acid beta-oxidation exclusively, in peroxisomes (see Wanders et al 1995 for review). Accumulation of phytanic acid and pristanic acid is found in blood and tissues of patients affected with generalized peroxisomal disorders. In this type of disorder, no morphologically distinguishable peroxisomes are present in tissues, resulting in accumulation of metabolites that are normally metabolized in these organelles (see Wanders et al 1995 for review). The group of generalized peroxisomal disorders consists of three diseases, differing in clinical presentation. Patients suffering from the most severe disease, Zellweger syndrome (McKusick 214100), have symptoms from birth on and usually do not live beyond their first year of life. Neonatal adrenoleukodystrophy (N-ALD, McKusick 202370) has a milder presentation, whereas infantile Refsum disease (IRD, McKusick 266510) is the mildest form among the generalized peroxisomal disorders. Not only in these generalized peroxisomal disorders, but also in some isolated peroxisomal beta-oxidation defects, elevated levels of phytanic acid and pristanic acid are found (ten Brink et al 1992a). The elevated phytanic acid levels are considered to be caused by product inhibition of alpha-oxidation by accumulating pristanic acid. This is reflected in a highly elevated pristanic acid to phytanic acid ratio in plasma from patients suffering from bifunctional protein deficiency or peroxisomal thiolase deficiency (ten Brink et al 1992a). Elevated phytanic acid concentrations are also found in plasma from patients affected with classical Refsum disease and rhizomelic chondrodysplasia punctata (RCDP). As pristanic acid beta-oxidation is not disturbed in these disorders, pristanic acid levels are normal (ten Brink et al 1992

摘要

使用氘代底物,在来自对照个体以及患有不同过氧化物酶体疾病的患者的培养成纤维细胞中,研究了植烷酸的α-氧化和降植烷酸的β-氧化。由[ω-2H6]植烷酸和[ω-2H6]降植烷酸形成[ω-2H6]4,8-二甲基壬酰肉碱([ω-2H6]C11-肉碱)被用作这些过程的标志物。通过串联质谱法进行分析。在正常细胞中,观察到[ω-2H6]植烷酸和[ω-2H6]降植烷酸均形成了[ω-2H6]C11-肉碱。当过氧化物酶体缺陷的成纤维细胞与这些底物一起孵育时,未检测到[ω-2H6]C11-肉碱,或者在两个案例中检测到的量非常低,这是由于过氧化物酶体α-氧化和β-氧化均存在缺陷所致。在过氧化物酶体双功能蛋白水平存在孤立的β-氧化缺陷的细胞中,也未检测到[ω-2H6]C11-肉碱的形成。从患有Refsum病(麦库西克编号266500)或点状软骨发育不良(麦库西克编号215100)的患者获得的、存在植烷酸α-氧化孤立缺陷的细胞,不会由[ω-2H6]植烷酸形成[ω-2H6]C11-肉碱。在这些细胞中观察到的由[ω-2H6]降植烷酸形成[ω-2H6]C11-肉碱的情况,与这些疾病中过氧化物酶体β-氧化正常一致。这项研究表明,将成纤维细胞分别与[ω-2H6]植烷酸和[ω-2H6]降植烷酸孵育,随后通过串联质谱法分析培养基中的酰基肉碱,可用于筛选细胞系中过氧化物酶体α-氧化和β-氧化途径的缺陷。植烷酸(3,7,11,15-四甲基十六烷酸)和降植烷酸(2,6,10,14-四甲基十五烷酸)是人类饮食中的支链脂肪酸成分。由于植烷酸具有β-甲基基团,它不能通过β-氧化降解。相反,植烷酸首先通过α-氧化降解,产生降植烷酸,降植烷酸随后通过β-氧化降解(图1)。植烷酸α-氧化被认为部分发生在过氧化物酶体中,而降植烷酸β-氧化则完全发生在过氧化物酶体中(见Wanders等人1995年的综述)。在患有全身性过氧化物酶体疾病的患者的血液和组织中发现了植烷酸和降植烷酸的积累。在这类疾病中,组织中不存在形态上可区分的过氧化物酶体,导致通常在这些细胞器中代谢的代谢产物积累(见Wanders等人1995年的综述)。全身性过氧化物酶体疾病组包括三种临床表现不同的疾病。患有最严重疾病——泽尔韦格综合征(麦库西克编号214100)的患者从出生就有症状,通常活不过一岁。新生儿肾上腺脑白质营养不良(N-ALD,麦库西克编号202370)的表现较轻,而婴儿型Refsum病(IRD,麦库西克编号266510)是全身性过氧化物酶体疾病中最轻的形式。不仅在这些全身性过氧化物酶体疾病中,而且在一些孤立的过氧化物酶体β-氧化缺陷中,也发现了植烷酸和降植烷酸水平升高(ten Brink等人1992a)。植烷酸水平升高被认为是由于积累的降植烷酸对α-氧化的产物抑制所致。这反映在患有双功能蛋白缺乏症或过氧化物酶体硫解酶缺乏症的患者血浆中降植烷酸与植烷酸的比率高度升高(ten Brink等人1992a)。在患有经典Refsum病和点状软骨发育不良(RCDP)的患者的血浆中也发现了植烷酸浓度升高。由于在这些疾病中降植烷酸β-氧化未受干扰,降植烷酸水平正常(ten Brink等人1992)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验