Suppr超能文献

人类视网膜中的红色、绿色以及红绿色混合色素:推导的蛋白质序列与心理物理学测量的光谱敏感度之间的相关性。

Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities.

作者信息

Sharpe L T, Stockman A, Jägle H, Knau H, Klausen G, Reitner A, Nathans J

机构信息

Forschungsstelle für Experimentelle Opthalmologie, Universit ats-Augenklinik Abteilung II, D-72076 Tübingen, Germany.

出版信息

J Neurosci. 1998 Dec 1;18(23):10053-69. doi: 10.1523/JNEUROSCI.18-23-10053.1998.

Abstract

To analyze the human red, green, and red-green hybrid cone pigments in vivo, we studied 41 male dichromats, each of whose X chromosome carries only a single visual pigment gene (single-gene dichromats). This simplified arrangement avoids the difficulties of complex opsin gene arrays and overlapping cone spectral sensitivities present in trichromats and of multiple genes encoding identical or nearly identical cone pigments in many dichromats. It thus allows for a straightforward correlation between each observer's spectral sensitivity measured at the cornea and the amino acid sequence of his visual pigment. For each of the 41 single-gene dichromats we determined the amino acid sequences of the X-linked cone pigment as deduced from its gene sequence. To correlate these sequences with spectral sensitivities in vivo, we determined the Rayleigh matches to different red/green ratios for 29 single-gene dichromats and measured psychophysically the spectral sensitivity of the remaining green (middle wavelength) or red (long wavelength) cones in 37 single-gene dichromats. Cone spectral sensitivity maxima obtained from subjects with identical visual pigment amino acid sequences show up to a approximately 3 nm variation from subject to subject, presumably because of a combination of inexact (or no) corrections for variation in preretinal absorption, variation in photopigment optical density, optical effects within the photoreceptor, and measurement error. This variation implies that spectral sensitivities must be averaged over multiple subjects with the same genotype to obtain representative values for a given pigment. The principal results of this study are that (1) approximately 54% of the single-gene protanopes (and approximately 19% of all protanopes) possess any one of several 5'red-3'green hybrid genes that encode anomalous pigments and that would be predicted to produce protanomaly if present in anomalous trichromats; (2) the alanine/serine polymorphism at position 180 in the red pigment gene produces a spectral shift of approximately 2.7 nm; (3) for each exon the set of amino acids normally associated with the red pigment produces spectral shifts to longer wavelengths, and the set of amino acids normally associated with the green pigment produces spectral shifts to shorter wavelengths; and (4) changes in exons 2, 3, 4, and 5 from green to red are associated with average spectral shifts to long wavelengths of approximately 1 nm (range, -0.5 to 2.5 nm), approximately 3.3 nm (range, -0.5 to 7 nm), approximately 2.8 nm (range, -0.5 to 6 nm), and approximately 24.9 nm (range, 22.2-27.6 nm).

摘要

为了在体内分析人类红色、绿色以及红-绿杂交视锥色素,我们研究了41名男性二色视者,他们的每条X染色体仅携带一个视觉色素基因(单基因二色视者)。这种简化的排列避免了三色视者中复杂的视蛋白基因阵列以及重叠的视锥光谱敏感性所带来的困难,也避免了许多二色视者中多个编码相同或近乎相同视锥色素的基因所带来的困难。因此,这使得能够直接将每个观察者在角膜处测得的光谱敏感性与其视觉色素的氨基酸序列相关联。对于这41名单基因二色视者中的每一位,我们都根据其基因序列推导确定了X连锁视锥色素的氨基酸序列。为了将这些序列与体内的光谱敏感性相关联,我们为29名单基因二色视者确定了与不同红/绿比例的瑞利匹配,并通过心理物理学方法测量了37名单基因二色视者中其余绿色(中波长)或红色(长波长)视锥的光谱敏感性。从具有相同视觉色素氨基酸序列的受试者获得的视锥光谱敏感性最大值,受试者之间显示出高达约3 nm的变化,推测这是由于视网膜前吸收的变化、光色素光密度的变化、光感受器内的光学效应以及测量误差等不精确(或无)校正的综合作用。这种变化意味着必须对具有相同基因型的多个受试者的光谱敏感性进行平均,以获得给定色素的代表性值。本研究的主要结果是:(1)约54%的单基因红色盲患者(以及约19%的所有红色盲患者)拥有几种5'红-3'绿杂交基因中的任何一种,这些基因编码异常色素,如果存在于异常三色视者中预计会产生红色弱视;(2)红色色素基因第180位的丙氨酸/丝氨酸多态性产生约2.7 nm的光谱偏移;(3)对于每个外显子,通常与红色色素相关的一组氨基酸会使光谱向更长波长偏移,而通常与绿色色素相关的一组氨基酸会使光谱向更短波长偏移;(4)外显子2、3、4和5从绿色变为红色与平均光谱向长波长的偏移相关,分别约为1 nm(范围为-0.5至2.5 nm)、约3.3 nm(范围为-0.5至7 nm)、约2.8 nm(范围为-0.5至6 nm)和约24.9 nm(范围为22.2 - 27.6 nm)。

相似文献

4
Visual acuity and X-linked color blindness.视力与X连锁色盲
Graefes Arch Clin Exp Ophthalmol. 2006 Apr;244(4):447-53. doi: 10.1007/s00417-005-0086-4. Epub 2005 Aug 23.
10
Genetic basis of photopigment variations in human dichromats.
Vision Res. 1995 Aug;35(15):2095-103. doi: 10.1016/0042-6989(94)00306-8.

引用本文的文献

1
On the Cranial Nerves.论颅神经。
NeuroSci. 2023 Dec 28;5(1):8-38. doi: 10.3390/neurosci5010002. eCollection 2024 Mar.
9
Individual Colorimetric Observer Model.个体比色观察模型。
PLoS One. 2016 Feb 10;11(2):e0145671. doi: 10.1371/journal.pone.0145671. eCollection 2016.

本文引用的文献

1
Brightness, visual acuity and colour blindness.亮度、视力与色盲。
Doc Ophthalmol. 1949;3:289-306. doi: 10.1007/BF00162607.
4
A FOVEAL PIGMENT IN THE DEUTERANOPE.绿色盲患者的中央凹色素
J Physiol. 1965 Jan;176(1):24-37. doi: 10.1113/jphysiol.1965.sp007532.
5
FOVEAL THRESHOLD SENSITIVITY ON FIELDS OF DIFFERENT COLORS.
Science. 1964 Sep 4;145(3636):1016-7. doi: 10.1126/science.145.3636.1016.
6
THE RECEPTORS OF HUMAN COLOR VISION.人类色觉的受体
Science. 1964 Sep 4;145(3636):1007-16. doi: 10.1126/science.145.3636.1007.
7
A CONE PIGMENT IN THE PROTANOPE.红色盲者中的一种视锥色素。
J Physiol. 1963 Sep;168(2):345-59. doi: 10.1113/jphysiol.1963.sp007196.
10
The effects on colour vision of adaptation to very bright lights.适应极亮光线对色觉的影响。
J Physiol. 1953 Nov 28;122(2):332-50. doi: 10.1113/jphysiol.1953.sp005003.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验