Sidossis L S
Department of Surgery, University of Texas Medical Branch, USA.
Can J Appl Physiol. 1998 Dec;23(6):558-69. doi: 10.1139/h98-031.
Glucose and fatty acids are the main energy sources for oxidative metabolism in endurance exercise. Although a reciprocal relationship exists between glucose and fatty acid contribution to energy production for a given metabolic rate, the controlling mechanism remains debatable. Randle et al.'s (1963) glucose-fatty acid cycle hypothesis provides a potential mechanism for regulating substrate interaction during exercise. The cornerstone of this hypothesis is that the rate of lipolysis, and therefore fatty acid availability, controls how glucose and fatty acids contribute to energy production. Increasing fatty acid availability attenuates carbohydrate oxidation during exercise, mainly via sparing intramuscular glycogen. However, there is little evidence for a direct inhibitory effect of fatty acids on glucose oxidation. We found that glucose directly determines the rate of fat oxidation by controlling fatty acid transport into the mitochondria. We propose that the intracellular availability of glucose, rather than fatty acids, regulates substrate interaction during exercise.
葡萄糖和脂肪酸是耐力运动中氧化代谢的主要能量来源。尽管在给定代谢率下,葡萄糖和脂肪酸对能量产生的贡献存在相互关系,但其控制机制仍存在争议。兰德尔等人(1963年)的葡萄糖-脂肪酸循环假说为运动过程中调节底物相互作用提供了一种潜在机制。该假说的基石是脂解速率,进而脂肪酸的可利用性,控制着葡萄糖和脂肪酸对能量产生的贡献方式。运动过程中,脂肪酸可利用性的增加主要通过节省肌内糖原,减弱碳水化合物的氧化。然而,几乎没有证据表明脂肪酸对葡萄糖氧化有直接抑制作用。我们发现,葡萄糖通过控制脂肪酸进入线粒体的转运,直接决定脂肪氧化的速率。我们提出,运动过程中底物相互作用是由细胞内葡萄糖的可利用性而非脂肪酸来调节的。