Suppr超能文献

DnaK和DnaJ的水平对大肠杆菌中热休克基因表达和蛋白质修复起到严格调控作用。

Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli.

作者信息

Tomoyasu T, Ogura T, Tatsuta T, Bukau B

机构信息

Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.

出版信息

Mol Microbiol. 1998 Nov;30(3):567-81. doi: 10.1046/j.1365-2958.1998.01090.x.

Abstract

The expression of heat shock genes in Escherichia coli is regulated by the antagonistic action of the transcriptional activator, the sigma32 subunit of RNA polymerase, and negative modulators. Modulators are the DnaK chaperone system, which inactivates and destabilizes sigma32, and the FtsH protease, which is largely responsible for sigma32 degradation. A yet unproven hypothesis is that the degree of sequestration of the modulators through binding to misfolded proteins determines the level of heat shock gene transcription. This hypothesis was tested by altering the modulator concentration in cells expressing dnaK, dnaJ and ftsH from IPTG and arabinose-controlled promoters. Small increases in levels of DnaK and the DnaJ co-chaperone (< 1.5-fold of wild type) resulted in decreased level and activity of sigma32 at intermediate temperature and faster shut-off of the heat shock response. Small decreases in their levels caused inverse effects and, furthermore, reduced the refolding efficiency of heat-denatured protein and growth at heat shock temperatures. Fewer than 1500 molecules of a substrate of the DnaK system, structurally unstable firefly luciferase, resulted in elevated levels of heat shock proteins and a prolonged shut-off phase of the heat shock response. In contrast, a decrease in FtsH levels increased the sigma32 levels, but the accumulated sigma32 was inactive, indicating that sequestration of FtsH alone cannot induce the heat shock response efficiently. DnaK and DnaJ thus constitute the primary stress-sensing and transducing system of the E. coli heat shock response, which detects protein misfolding with high sensitivity.

摘要

大肠杆菌中热休克基因的表达受转录激活因子(RNA聚合酶的σ32亚基)和负调控因子的拮抗作用调节。调控因子包括DnaK伴侣系统,它使σ32失活并使其不稳定;以及FtsH蛋白酶,它在很大程度上负责σ32的降解。一个尚未得到证实的假说是,调控因子通过与错误折叠的蛋白质结合而被隔离的程度决定了热休克基因转录的水平。通过改变从IPTG和阿拉伯糖控制启动子表达dnaK、dnaJ和ftsH的细胞中的调控因子浓度,对这一假说进行了验证。DnaK和DnaJ共伴侣水平的小幅增加(<野生型的1.5倍)导致在中等温度下σ32的水平和活性降低,热休克反应的关闭更快。它们水平的小幅降低则产生相反的效果,此外,还降低了热变性蛋白的重折叠效率以及在热休克温度下的生长。DnaK系统的一种底物——结构不稳定的萤火虫荧光素酶,少于1500个分子就会导致热休克蛋白水平升高以及热休克反应的关闭阶段延长。相比之下,FtsH水平的降低会增加σ32的水平,但积累的σ32是无活性的,这表明单独隔离FtsH不能有效地诱导热休克反应。因此,DnaK和DnaJ构成了大肠杆菌热休克反应的主要应激感应和转导系统,它能高度灵敏地检测蛋白质错误折叠。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验