Suppr超能文献

医学叙事的粒度及其对信息检索速度和完整性的影响。

The granularity of medical narratives and its effect on the speed and completeness of information retrieval.

作者信息

Tange H J, Schouten H C, Kester A D, Hasman A

机构信息

Department of Medical Informatics, Maastricht University, The Netherlands.

出版信息

J Am Med Inform Assoc. 1998 Nov-Dec;5(6):571-82. doi: 10.1136/jamia.1998.0050571.

Abstract

OBJECTIVE

Using electronic rather than paper-based record systems improves clinicians' information retrieval from patient narratives. However, few studies address how data should be organized for this purpose. Information retrieval from clinical narratives containing free text involves two steps: searching for a labeled segment and reading its content. The authors hypothesized that physicians can retrieve information better when clinical narratives are divided into many small, labeled segments ("high granularity").

DESIGN

The study tested the ability of 24 internists and 12 residents at a teaching hospital to retrieve information from an electronic medical record--in terms of speed and completeness--when using different granularities of clinical narratives. Participants solved, without time pressure, predefined problems concerning three voluminous, inpatient case records. To mitigate confounding factors, participants were randomly allocated to a sequence that was balanced by patient case and learning effect.

RESULTS

Compared with retrieval from undivided notes, information retrieval from problem-partitioned notes was 22 percent faster (statistically significant), whereas retrieval from notes divided into organ systems was only 11 percent faster (not statistically significant). Subdividing segments beyond organ systems was 13 percent slower (statistically significant) than not subdividing. Granularity of medical narratives affected the speed but not the completeness of information retrieval.

CONCLUSION

Dividing voluminous free-text clinical narratives into labeled segments makes patient-related information retrieval easier. However, too much subdivision slows retrieval. Study results suggest that a coarser granularity is required for optimal information retrieval than for structured data entry. Validation of these conclusions in real-life clinical practice is recommended.

摘要

目的

使用电子记录系统而非纸质记录系统可改善临床医生从患者叙述中检索信息的情况。然而,很少有研究探讨为此目的数据应如何组织。从包含自由文本的临床叙述中检索信息涉及两个步骤:搜索标记的片段并阅读其内容。作者假设,当临床叙述被分成许多小的、有标记的片段(“高粒度”)时,医生能更好地检索信息。

设计

该研究测试了一家教学医院的24名内科住院医师和12名住院医生在使用不同粒度的临床叙述时,从电子病历中检索信息的速度和完整性。参与者在没有时间压力的情况下,解决了关于三份大量住院病例记录的预定义问题。为了减轻混杂因素的影响,参与者被随机分配到一个由患者病例和学习效果平衡的序列中。

结果

与从未分割的记录中检索信息相比,从按问题划分的记录中检索信息快22%(具有统计学意义),而从按器官系统划分的记录中检索信息仅快11%(无统计学意义)。将片段细分到器官系统之外比不细分慢13%(具有统计学意义)。医学叙述的粒度影响信息检索的速度,但不影响其完整性。

结论

将大量自由文本的临床叙述分成有标记的片段可使与患者相关的信息检索更容易。然而,过多的细分会减慢检索速度。研究结果表明,与结构化数据录入相比,最佳信息检索需要更粗粒度的数据。建议在实际临床实践中验证这些结论。

相似文献

3
Medical narratives in electronic medical records.电子病历中的医学叙事
Int J Med Inform. 1997 Aug;46(1):7-29. doi: 10.1016/s1386-5056(97)00048-8.
7
OpenSDE: Row modeling applied to generic structured data entry.OpenSDE:应用于通用结构化数据录入的行建模
J Am Med Inform Assoc. 2004 Mar-Apr;11(2):162-5. doi: 10.1197/jamia.M1375. Epub 2003 Dec 7.

引用本文的文献

1
Constructing a Clinical Patient Similarity Network of Gastric Cancer.构建胃癌临床患者相似性网络。
Bioengineering (Basel). 2024 Aug 9;11(8):808. doi: 10.3390/bioengineering11080808.
4
Management of the Patient with Chronic Critical Illness - Part 2.慢性危重病患者的管理 - 第2部分。
J Community Hosp Intern Med Perspect. 2022 Sep 9;12(5):6-10. doi: 10.55729/2000-9666.1066. eCollection 2022.
5
Clinical data quality: a data life cycle perspective.临床数据质量:从数据生命周期角度看
Biostat Epidemiol. 2020;4(1):6-14. doi: 10.1080/24709360.2019.1572344. Epub 2019 Feb 23.

本文引用的文献

1
Medical narratives in electronic medical records.电子病历中的医学叙事
Int J Med Inform. 1997 Aug;46(1):7-29. doi: 10.1016/s1386-5056(97)00048-8.
3
Data entry in computer-based care planning.基于计算机的护理计划中的数据录入。
Comput Methods Programs Biomed. 1995 Sep-Oct;48(1-2):103-7. doi: 10.1016/0169-2607(95)01668-j.
8
Intelligent Medical Record--entry (IMR-E).智能病历录入(IMR-E)
J Med Syst. 1993 Aug;17(3-4):139-51. doi: 10.1007/BF00996938.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验