Suppr超能文献

UDP-galactose 4-epimerase from Kluyveromyces fragilis: reconstitution of holoenzyme structure after dissociation with parachloromercuribenzoate.

作者信息

Majumdar S, Bhattacharjee H, Bhattacharyya D, Bhaduri A

机构信息

Division of Protein Engineering, Indian Institute of Chemical Biology, Calcutta.

出版信息

Eur J Biochem. 1998 Oct 15;257(2):427-33. doi: 10.1046/j.1432-1327.1998.2570427.x.

Abstract

UDP-galactose 4-epimerase from yeast Kluyveromyces fragilis (Kluyveromyces marxianus var. marxianus) is a homodimer of molecular mass 75 kDa/subunit and has one mol NAD firmly bound/dimer. The pathway for the assembly of the holoenzyme structure has been studied after dissociating the native epimerase with p-chloromercuribenzoate into inactive mercurated monomers. The process of dissociation was not associated with unfolding of the molecules. Reconstitution of the functional holoenzyme was done by reduction with dithiothreitol and addition of extra NAD. The reaction was thus followed to monitor maturation of the enzyme from the folded monomeric state. The reconstituted enzyme was similar to the native enzyme in terms of a number of physiochemical properties such as secondary, tertiary and quarternary structures, Km for the substrate UDP-galactose, reductive inhibition, interaction with the fluorophore 1-anilino 8-naphthalene sulphonic acid (ANS), etc. Reconstitution under low ionic strength buffer (I = 0.011) shows that the presence of NAD is essential for the formation of a dimeric structure. However, dimeric apoenzyme could also be stabilized under high ionic strength buffer (I = 0.1). Reactivation was strongly dependent on pH, being most effective at pH 8.1. Kinetic evidence suggested that, at low ionic strength, assembly of NAD over dimeric apoenzyme is the rate-limiting step in expressing catalytic activity. This process has a low energy of activation of 27.2 kJ/mol.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验