Suppr超能文献

亚硝化应激:涉及黄素血红蛋白的代谢途径。

Nitrosative stress: metabolic pathway involving the flavohemoglobin.

作者信息

Hausladen A, Gow A J, Stamler J S

机构信息

Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14100-5. doi: 10.1073/pnas.95.24.14100.

Abstract

Nitric oxide (NO) biology has focused on the tightly regulated enzymatic mechanism that transforms L-arginine into a family of molecules, which serve both signaling and defense functions. However, very little is known of the pathways that metabolize these molecules or turn off the signals. The paradigm is well exemplified in bacteria where S-nitrosothiols (SNO)-compounds identified with antimicrobial activities of NO synthase-elicit responses that mediate bacterial resistance by unknown mechanisms. Here we show that Escherichia coli possess both constitutive and inducible elements for SNO metabolism. Constitutive enzyme(s) cleave SNO to NO whereas bacterial hemoglobin, a widely distributed flavohemoglobin of poorly understood function, is central to the inducible response. Remarkably, the protein has evolved a novel heme-detoxification mechanism for NO. Specifically, the heme serves a dioxygenase function that produces mainly nitrate. These studies thus provide new insights into SNO and NO metabolism and identify enzymes with reactions that were thought to occur only by chemical means. Our results also emphasize that the reactions of SNO and NO with hemoglobins are evolutionary conserved, but have been adapted for cell-specific function.

摘要

一氧化氮(NO)生物学一直聚焦于将L-精氨酸转化为一系列分子的严格调控的酶促机制,这些分子兼具信号传导和防御功能。然而,对于代谢这些分子或关闭信号的途径却知之甚少。这一模式在细菌中得到了很好的体现,其中与一氧化氮合酶抗菌活性相关的S-亚硝基硫醇(SNO)化合物引发的反应通过未知机制介导细菌抗性。在此,我们表明大肠杆菌拥有SNO代谢的组成型和诱导型元件。组成型酶将SNO裂解为NO,而细菌血红蛋白,一种功能尚不清楚且广泛分布的黄素血红蛋白,是诱导反应的核心。值得注意的是,该蛋白进化出了一种针对NO的新型血红素解毒机制。具体而言,血红素发挥双加氧酶功能,主要产生硝酸盐。因此,这些研究为SNO和NO代谢提供了新的见解,并鉴定出了被认为仅通过化学方式发生反应的酶。我们的结果还强调,SNO和NO与血红蛋白的反应在进化上是保守的,但已适应细胞特异性功能。

相似文献

1
Nitrosative stress: metabolic pathway involving the flavohemoglobin.
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14100-5. doi: 10.1073/pnas.95.24.14100.
3
Nitric oxide and thiol groups.
Biochim Biophys Acta. 1999 May 5;1411(2-3):323-33. doi: 10.1016/s0005-2728(99)00023-7.
5
A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans.
Nature. 2001 Mar 22;410(6827):490-4. doi: 10.1038/35068596.
6
A genetic analysis of nitrosative stress.
Biochemistry. 2009 Feb 3;48(4):792-9. doi: 10.1021/bi801813n.
7
Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein.
Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):594-9. doi: 10.1073/pnas.0406549102. Epub 2005 Jan 6.
8
Protection from nitrosative stress by yeast flavohemoglobin.
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4672-6. doi: 10.1073/pnas.090083597.

引用本文的文献

3
Strategies of Pathogens to Escape from NO-Based Host Defense.
Antioxidants (Basel). 2022 Nov 3;11(11):2176. doi: 10.3390/antiox11112176.
4
Nitric Oxide Metabolism Affects Germination in and Is Connected to Nitrate Assimilation.
J Fungi (Basel). 2022 Jul 1;8(7):699. doi: 10.3390/jof8070699.
5
6
Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain.
Pediatr Res. 2021 Mar;89(4):738-745. doi: 10.1038/s41390-020-1017-0. Epub 2020 Jun 20.
7
Flavohaemoglobin: the pre-eminent nitric oxide-detoxifying machine of microorganisms.
F1000Res. 2020 Jan 8;9. doi: 10.12688/f1000research.20563.1. eCollection 2020.
8
Anaerobic Transcription by OxyR: A Novel Paradigm for Nitrosative Stress.
Antioxid Redox Signal. 2020 Apr 20;32(12):803-816. doi: 10.1089/ars.2019.7921. Epub 2019 Dec 3.
9
Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical assemblage A and B isolates.
Infect Drug Resist. 2019 May 10;12:1221-1235. doi: 10.2147/IDR.S177997. eCollection 2019.
10
Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation.
Physiol Rev. 2019 Jan 1;99(1):311-379. doi: 10.1152/physrev.00036.2017.

本文引用的文献

1
Role for the Salmonella flavohemoglobin in protection from nitric oxide.
J Biol Chem. 1998 May 15;273(20):12543-7. doi: 10.1074/jbc.273.20.12543.
2
Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers.
Nat Struct Biol. 1998 Apr;5(4):267-71. doi: 10.1038/nsb0498-267.
3
Xanthine oxidase-mediated decomposition of S-nitrosothiols.
J Biol Chem. 1998 Apr 3;273(14):7828-34. doi: 10.1074/jbc.273.14.7828.
4
Cell-mediated biotransformation of S-nitrosoglutathione.
Biochem Pharmacol. 1998 Mar 1;55(5):657-65. doi: 10.1016/s0006-2952(97)00498-x.
5
Reactions between nitric oxide and haemoglobin under physiological conditions.
Nature. 1998 Jan 8;391(6663):169-73. doi: 10.1038/34402.
6
Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation.
Science. 1998 Jan 9;279(5348):234-7. doi: 10.1126/science.279.5348.234.
8
Superoxide anion radical (O2-.), superoxide dismutases, and related matters.
J Biol Chem. 1997 Jul 25;272(30):18515-7. doi: 10.1074/jbc.272.30.18515.
10
(S)NO signals: translocation, regulation, and a consensus motif.
Neuron. 1997 May;18(5):691-6. doi: 10.1016/s0896-6273(00)80310-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验