Diederichs K, Freigang J, Umhau S, Zeth K, Breed J
Universität Konstanz, Fakultät für Biologie (M656), Germany. Kay.Diederichs@uni-konstanz
Protein Sci. 1998 Nov;7(11):2413-20. doi: 10.1002/pro.5560071119.
An artificial neural network (NN) was trained to predict the topology of bacterial outer membrane (OM) beta-strand proteins. Specifically, the NN predicts the z-coordinate of Calpha atoms in a coordinate frame with the outer membrane in the xy-plane, such that low z-values indicate periplasmic turns, medium z-values indicate transmembrane beta-strands, and high z-values indicate extracellular loops. To obtain a training set, seven OM proteins (porins) with structures known to high resolution were aligned with their pores along the z-axis. The relationship between Calpha z-values and topology was thereby established. To predict the topology of other OM proteins, all seven porins were used for the training set. Z-values (topologies) were predicted for two porins with hitherto unknown structure and for OM proteins not belonging to the porin family, all with insignificant sequence homology to the training set. The results of topology prediction compare favorably with experimental topology data.
训练了一个人工神经网络(NN)来预测细菌外膜(OM)β链蛋白的拓扑结构。具体而言,该神经网络在一个坐标框架中预测α碳原子的z坐标,其中外膜位于xy平面,使得低z值表示周质转角,中等z值表示跨膜β链,高z值表示细胞外环。为了获得一个训练集,将七个具有高分辨率已知结构的OM蛋白(孔蛋白)沿z轴与它们的孔对齐。由此建立了α碳原子z值与拓扑结构之间的关系。为了预测其他OM蛋白的拓扑结构,所有七个孔蛋白都用于训练集。对两个结构迄今未知的孔蛋白以及不属于孔蛋白家族的OM蛋白预测了z值(拓扑结构),所有这些蛋白与训练集的序列同源性都很低。拓扑结构预测的结果与实验拓扑数据相比具有优势。