Einstein A J, Wu H S, Sanchez M, Gil J
Department of Biomathematical Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
J Pathol. 1998 Aug;185(4):366-81. doi: 10.1002/(SICI)1096-9896(199808)185:4<366::AID-PATH122>3.0.CO;2-C.
This study explores the use of fractal analysis in the numerical description of chromatin appearance in breast cytology. Images of nuclei from fine-needle aspiration biopsies of the breast are characterized in terms of their Minkowski and spectral fractal dimensions, for 19 patients with benign epithelial cell lesions and 22 with invasive ductal carcinomas. Chromatin appearance in breast epithelial cell nuclear images is demonstrated to be fractal, suggesting that the three-dimensional chromatin structure in these cells also has fractal properties. A statistically significant difference between the mean spectral dimensions of the benign and malignant cases is demonstrated. The two fractal dimensions are very weakly correlated. A statistically significant difference between the benign and malignant cases in lacunarity, a fractal property characterizing the size of holes or gaps in a texture, is found over a wide range of scales. These differences are particularly pronounced at the smallest and largest scales, corresponding respectively to fine-scale texture, indicating whether chromatin is clumped or fine, and to large-scale structures like nucleoli. Logistic regression and artificial neural network classification models are developed to classify unknown cases on the basis of fractal measures of chromatin texture. Using leave-one-out cross-validation, the best logistic regression classifier correctly diagnoses 95.1 per cent of the cases. The best neural network model can correctly classify all of the cases, but it is unclear whether this is due to overtraining. Fractal dimensions and lacunarity are useful tools for the quantitative characterization of chromatin appearance, and can potentially be incorporated into image analysis devices to assure the quality and reproducibility of diagnosis by breast fine-needle aspiration biopsy.
本研究探讨分形分析在乳腺细胞学中染色质外观数值描述方面的应用。对19例良性上皮细胞病变患者和22例浸润性导管癌患者的乳腺细针穿刺活检细胞核图像,根据其闵可夫斯基分形维数和光谱分形维数进行特征描述。结果表明,乳腺上皮细胞核图像中的染色质外观具有分形特征,这表明这些细胞中的三维染色质结构也具有分形特性。良性和恶性病例的平均光谱维数之间存在统计学上的显著差异。这两个分形维数之间的相关性非常弱。在很宽的尺度范围内,发现良性和恶性病例在孔隙率方面存在统计学上的显著差异,孔隙率是一种表征纹理中孔洞或间隙大小的分形特性。这些差异在最小和最大尺度上尤为明显,分别对应于精细尺度纹理,表明染色质是聚集的还是精细的,以及对应于核仁等大尺度结构。基于染色质纹理的分形测量,开发了逻辑回归和人工神经网络分类模型来对未知病例进行分类。使用留一法交叉验证,最佳逻辑回归分类器能正确诊断95.1%的病例。最佳神经网络模型可以正确分类所有病例,但尚不清楚这是否是由于过度训练所致。分形维数和孔隙率是定量表征染色质外观的有用工具,并且有可能被纳入图像分析设备中,以确保乳腺细针穿刺活检诊断的质量和可重复性。