Suppr超能文献

Effects of alpha-erabutoxin, alpha-bungarotoxin, alpha-cobratoxin and fasciculin on the nicotine-evoked release of dopamine in the rat striatum in vivo.

作者信息

Dajas-Bailador F, Costa G, Dajas F, Emmett S

机构信息

Neurochemistry Division, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.

出版信息

Neurochem Int. 1998 Oct;33(4):307-12. doi: 10.1016/s0197-0186(98)00033-3.

Abstract

Snake neurotoxins (NTX) have proven to be valuable tools for the characterisation of muscular nicotinic acetylcholine receptor structure and function. It is very likely that they could also be utilised to identify subtypes of neuronal nicotinic receptors controlling specific functions within the central nervous system. In this study we examined the effects of long alpha NTX (alpha-bungarotoxin, alpha-Bgt, and alpha-cobratoxin, alpha-Cbt) and short alpha NTX (alpha-erabutoxin a, alpha-Ebt) as well as the anticholinesterase toxin fasciculin-2 (FAS), on the nicotine-evoked release of dopamine (DA) in the striatum, using the in vivo push-pull technique. The short toxins alpha-Ebt and FAS blocked the extracellular increase of DA evoked by nicotine at 4.2 microM concentrations and alpha-Ebt was more potent, as reflected by the blockade at the lower dose of 0.42 microM. In contrast, the long toxins showed a different profile of action. Alpha-Cbt did not show any blockade of the nicotine-evoked release of DA at the doses studied while alpha-Bgt did block it only at the higher dose (4.2 microM) These results indicate that short neurotoxins show a stronger interaction with striatal nicotinic receptors subtypes controlling DA release when compared to the long ones. This interaction of short neurotoxin polypeptides and presynaptic receptors may permit the further elucidation of the particular nicotinic receptor populations responsible for the modulation of striatal DA release.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验