Shi D, Morizono H, Ha Y, Aoyagi M, Tuchman M, Allewell N M
Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, USA.
J Biol Chem. 1998 Dec 18;273(51):34247-54. doi: 10.1074/jbc.273.51.34247.
The crystal structure of human ornithine transcarbamoylase complexed with the bisubstrate analog N-phosphonacetyl-L-ornithine has been solved at 1.85-A resolution by molecular replacement. Deleterious mutations produce clinical hyperammonia that, if untreated, results in neurological symptoms or death (ornithine transcarbamylase deficiency). The holoenzyme is trimeric, and as in other transcarbamoylases, each subunit contains an N-terminal domain that binds carbamoyl phosphate and a C-terminal domain that binds L-ornithine. The active site is located in the cleft between domains and contains additional residues from an adjacent subunit. Binding of N-phosphonacetyl-L-ornithine promotes domain closure. The resolution of the structure enables the role of active site residues in the catalytic mechanism to be critically examined. The side chain of Cys-303 is positioned so as to be able to interact with the delta-amino group of L-ornithine which attacks the carbonyl carbon of carbamoyl phosphate in the enzyme-catalyzed reaction. This sulfhydryl group forms a charge relay system with Asp-263 and the alpha-amino group of L-ornithine, instead of with His-302 and Glu-310, as previously proposed. In common with other ureotelic ornithine transcarbamoylases, the human enzyme lacks a loop of approximately 20 residues between helix H10 and beta-strand B10 which is present in prokaryotic ornithine transcarbamoylases but has a C-terminal extension of 10 residues that interacts with the body of the protein but is exposed. The sequence of this C-terminal extension is homologous to an interhelical loop found in several membrane proteins, including mitochondrial transport proteins, suggesting a possible mode of interaction with the inner mitochondrial membrane.
通过分子置换法,已解析出与双底物类似物N-膦酰乙酰-L-鸟氨酸复合的人鸟氨酸转氨甲酰酶的晶体结构,分辨率为1.85埃。有害突变会导致临床高氨血症,若不治疗,会引发神经症状或死亡(鸟氨酸转氨甲酰酶缺乏症)。全酶是三聚体,与其他转氨甲酰酶一样,每个亚基都包含一个结合氨甲酰磷酸的N端结构域和一个结合L-鸟氨酸的C端结构域。活性位点位于两个结构域之间的裂隙中,还包含来自相邻亚基的其他残基。N-膦酰乙酰-L-鸟氨酸的结合促进结构域闭合。该结构的解析使得能够严格检验活性位点残基在催化机制中的作用。半胱氨酸-303的侧链位置使其能够与L-鸟氨酸的δ-氨基相互作用,在酶催化反应中,L-鸟氨酸的δ-氨基会攻击氨甲酰磷酸的羰基碳。这个巯基与天冬氨酸-263和L-鸟氨酸的α-氨基形成电荷中继系统,而不是像之前所提出的那样与组氨酸-302和谷氨酸-310形成电荷中继系统。与其他排尿素动物的鸟氨酸转氨甲酰酶一样,人源酶在螺旋H10和β-链B10之间缺少一段约20个残基的环,原核生物的鸟氨酸转氨甲酰酶中有这段环,但人源酶有一个10个残基的C端延伸,它与蛋白质主体相互作用但暴露在外。这段C端延伸的序列与在几种膜蛋白(包括线粒体转运蛋白)中发现的螺旋间环同源,提示了与线粒体内膜可能的相互作用模式。