Daftary S S, Boudaba C, Szabó K, Tasker J G
Molecular and Cellular Biology Program, Tulane University, New Orleans, Louisiana 70118, USA.
J Neurosci. 1998 Dec 15;18(24):10619-28. doi: 10.1523/JNEUROSCI.18-24-10619.1998.
Noradrenergic projections to the hypothalamus play a critical role in the afferent control of oxytocin and vasopressin release. Recent evidence for intrahypothalamic glutamatergic circuits prompted us to test the hypothesis that the excitatory effect of noradrenergic inputs on oxytocin and vasopressin release is mediated in part by local glutamatergic interneurons. The voltage response to norepinephrine (30-300 microM) was tested with whole-cell recordings in putative magnocellular neurons of the paraventricular nucleus (PVN) in hypothalamic slices (400 micrometers). Norepinephrine elicited an alpha1 receptor-mediated direct depolarization in 23% of the magnocellular neurons tested; however, the most prominent response, seen in 42% of the magnocellular neurons, was an alpha1 receptor-mediated increase in the frequency of EPSPs. The norepinephrine-induced increase in EPSPs was blocked by tetrodotoxin and by ionotropic glutamate receptor antagonists, suggesting that norepinephrine excited presynaptic glutamate neurons to cause an increase in spike-mediated transmitter release. The increase in EPSPs also was observed in a surgically isolated PVN preparation (64% of cells) and with microdrop applications of norepinephrine (1 mM, 33% of cells) and glutamate (0.5-1 mM, 28%) in the PVN, indicating that the norepinephrine-sensitive presynaptic glutamate neurons are located within the PVN. Biocytin injection and subsequent immunohistochemical labeling revealed that both oxytocin and vasopressin neurons responded to norepinephrine. Our data indicate that magnocellular neurons of the PVN receive excitatory inputs from intranuclear glutamatergic neurons that express alpha1-adrenoreceptors. These glutamatergic interneurons may serve as an excitatory relay in the afferent noradrenergic control of oxytocin and vasopressin release under certain physiological conditions.
去甲肾上腺素能投射至下丘脑在催产素和血管加压素释放的传入控制中起关键作用。下丘脑内谷氨酸能回路的最新证据促使我们检验这一假说,即去甲肾上腺素能输入对催产素和血管加压素释放的兴奋作用部分是由局部谷氨酸能中间神经元介导的。在厚度为400微米的下丘脑切片中,采用全细胞膜片钳记录技术检测了室旁核(PVN)中假定的大细胞神经元对去甲肾上腺素(30 - 300微摩尔)的电压反应。去甲肾上腺素在23%的受试大细胞神经元中引发了α1受体介导的直接去极化;然而,在42%的大细胞神经元中观察到的最显著反应是α1受体介导的兴奋性突触后电位(EPSP)频率增加。去甲肾上腺素诱导的EPSP增加被河豚毒素和离子型谷氨酸受体拮抗剂阻断,这表明去甲肾上腺素兴奋了突触前谷氨酸能神经元,导致由动作电位介导的递质释放增加。在手术分离的PVN标本中(64%的细胞)以及在PVN中微量滴注去甲肾上腺素(1毫摩尔,33%的细胞)和谷氨酸(0.5 - 1毫摩尔,28%)时也观察到了EPSP增加,这表明对去甲肾上腺素敏感的突触前谷氨酸能神经元位于PVN内。生物胞素注射及随后的免疫组织化学标记显示,催产素和血管加压素神经元均对去甲肾上腺素产生反应。我们的数据表明,PVN的大细胞神经元接受来自表达α1 - 肾上腺素能受体的核内谷氨酸能神经元的兴奋性输入。在某些生理条件下,这些谷氨酸能中间神经元可能在传入的去甲肾上腺素能对催产素和血管加压素释放的控制中充当兴奋性中继。