Suppr超能文献

绘制面部空间中的吸引子场:人脸识别中的非典型性偏差。

Mapping attractor fields in face space: the atypicality bias in face recognition.

作者信息

Tanaka J, Giles M, Kremen S, Simon V

机构信息

Department of Psychology, Oberlin College, OH 44074-1086, USA.

出版信息

Cognition. 1998 Sep;68(3):199-220. doi: 10.1016/s0010-0277(98)00048-1.

Abstract

A familiar face can be recognized across many changes in the stimulus input. In this research, the many-to-one mapping of face stimuli to a single face memory is referred to as a face memory's 'attractor field'. According to the attractor field approach, a face memory will be activated by any stimuli falling within the boundaries of its attractor field. It was predicted that by virtue of its location in a multi-dimensional face space, the attractor field of an atypical face will be larger than the attractor field of a typical face. To test this prediction, subjects make likeness judgments to morphed faces that contained a 50/50 contribution from an atypical and a typical parent face. The main result of four experiments was that the morph face was judged to bear a stronger resemblance to the atypical face parent than the typical face parent. The computational basis of the atypicality bias was demonstrated in a neural network simulation where morph inputs of atypical and typical representations elicited stronger activation of atypical output units than of typical output units. Together, the behavioral and simulation evidence supports the view that the attractor fields of atypical faces span over a broader region of face space that the attractor fields of typical faces.

摘要

在刺激输入发生许多变化的情况下,一张熟悉的面孔仍能被识别出来。在本研究中,面部刺激到单个面部记忆的多对一映射被称为面部记忆的“吸引场”。根据吸引场方法,任何落入其吸引场边界内的刺激都会激活面部记忆。据预测,由于其在多维面部空间中的位置,非典型面孔的吸引场将比典型面孔的吸引场更大。为了验证这一预测,受试者对由非典型和典型亲本面孔各贡献50%的变形面孔进行相似度判断。四个实验的主要结果是,与典型面孔亲本相比,变形面孔被判断与非典型面孔亲本的相似度更高。在神经网络模拟中证明了非典型性偏差的计算基础,其中非典型和典型表征的变形输入引发非典型输出单元的激活强于典型输出单元。行为和模拟证据共同支持这样一种观点,即非典型面孔的吸引场在面部空间中跨越的区域比典型面孔的吸引场更广泛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验