Schiffelers S L, Brouwer E M, Saris W H, van Baak M A
Nutrition Toxicology and Environment Research Institute Maastricht, Department of Human Biology, Maastricht University, The Netherlands.
Metabolism. 1998 Dec;47(12):1462-7. doi: 10.1016/s0026-0495(98)90070-1.
The purpose of the study was to investigate whether the increase in energy expenditure and lipid oxidation during beta1-adrenergic stimulation is caused by the concomitant increase in lipolysis. Twelve healthy male subjects participated in three trials: no-LIP/-, inhibition of lipolysis by pretreatment with acipimox followed by saline infusion; -/BETA, no pretreatment, with dobutamine infusion to stimulate beta1-adrenoceptors; and no-LIP/BETA, pretreatment with acipimox followed by dobutamine infusion. Inhibition of lipolysis did not affect baseline energy expenditure, but decreased lipid oxidation and increased carbohydrate oxidation. Energy expenditure and lipid oxidation increased significantly during beta1-adrenergic stimulation, but this increase was significantly smaller when lipolysis was inhibited ([baseline v infusion period] energy expenditure: -/BETA, 5.15 +/- 0.16 v 6.11 +/- 0.26 kJ/min, P < .001; no-LIP/BETA, 5.28 +/- 0.17 v 5.71 +/- 0.19 kJ/min, P < .01; lipid oxidation: -/BETA, 0.059 +/- 0.004 v 0.073 +/- 0.006 g/min, P < .01; no-LIP/BETA, 0.034 +/- 0.005 v 0.039 +/- 0.006 g/min, P < .05). Baseline plasma glycerol and nonesterified fatty acid (NEFA) concentrations decreased after inhibition of lipolysis. Glycerol and NEFA increased significantly during beta1-adrenergic stimulation alone (glycerol, 65.0 +/- 5.3 v 117.0 +/- 10.9 micromol/L; NEFA, 362 +/- 24 v 954 /- 89 micromol/L; both P < .001). Concomitant administration of acipimox prevented a substantial part of the increase in lipolysis during beta1-adrenergic stimulation, but the increase in plasma glycerol and NEFA remained significant (glycerol, 40.4 +/- 2.2 v 44.8 +/- 2.2 micromol/L; NEFA, 118 +/- 18 v 160 +/- 19 micromol/L; both P < .05). In conclusion, a reduced availability of plasma NEFA was associated with a reduced increase in energy expenditure and lipid oxidation during beta1-adrenergic stimulation in man.
本研究的目的是调查β1 - 肾上腺素能刺激期间能量消耗和脂质氧化的增加是否由同时发生的脂解增加所引起。12名健康男性受试者参与了三项试验:无脂解组(no - LIP/-),先用阿昔莫司预处理抑制脂解,随后输注生理盐水;β受体激动剂组(-/BETA),不进行预处理,输注多巴酚丁胺刺激β1 - 肾上腺素能受体;无脂解/β受体激动剂组(no - LIP/BETA),先用阿昔莫司预处理,随后输注多巴酚丁胺。脂解抑制不影响基础能量消耗,但降低了脂质氧化并增加了碳水化合物氧化。β1 - 肾上腺素能刺激期间能量消耗和脂质氧化显著增加,但当脂解受到抑制时,这种增加显著减小([基础值与输注期]能量消耗:β受体激动剂组,5.15±0.16对6.11±0.26kJ/min,P <.001;无脂解/β受体激动剂组,5.28±0.17对5.71±0.19kJ/min,P <.01;脂质氧化:β受体激动剂组,0.059±0.004对0.073±0.006g/min,P <.01;无脂解/β受体激动剂组,0.034±0.005对0.039±0.006g/min,P <.05)。脂解抑制后,基础血浆甘油和非酯化脂肪酸(NEFA)浓度降低。仅在β1 - 肾上腺素能刺激期间甘油和NEFA显著增加(甘油,65.0±5.3对117.0±10.9μmol/L;NEFA,362±24对954±89μmol/L;两者P <.001)。同时给予阿昔莫司可防止β1 - 肾上腺素能刺激期间脂解增加的大部分,但血浆甘油和NEFA的增加仍然显著(甘油,40.4±2.2对44.8±2.2μmol/L;NEFA,118±18对160±19μmol/L;两者P <.05)。总之,血浆NEFA可用性降低与人体β1 - 肾上腺素能刺激期间能量消耗和脂质氧化增加的减少相关。