Hsia T Y, Billingham M, Sung R J
Falk Cardiovascular Research Center, Stanford University School of Medicine, California, USA.
J Interv Card Electrophysiol. 1997 Feb;1(1):7-14. doi: 10.1023/a:1009750215308.
To develop a new technique for ablating arrhythmias by interrupting coronary perfusion of the myocardium, we studied six mongrel dogs, weighing 20-35 kg. Under angiographic guidance a microcatheter (1.0 mm diameter) was introduced into a branch of the left anterior descending or posterior descending coronary artery. A detachable platinum coil (0.0254 cm diameter, 3 cm length) soldered onto a stainless-steel delivery wire (Guglielmi) was inserted through the microcatheter and advanced to occlude the arterial branch. A 0.5-mA electric current applied to the proximal end of the delivery wire resulted in intravascular thrombosis due to attraction of the negatively charged blood cells, platelets, and fibrinogen to the positively charged platinum coil. In approximately 4.5 minutes, as the thrombus was formed, electric current dissolved the soldering and detached the platinum coil from the delivery wire. Electrocardiograms showed focal ST-T changes but no ventricular tachyarrhythmias. Pathologic studies revealed thrombosis around the platinum coil and well-demarcated focal ischemia/infarction that was correlated with elevation of cardiac enzymes. We conclude that intracoronary arterial embolization and electrothrombosis using an electrolytic platinum coil can be selectively performed in a very small coronary arterial branch, resulting in a limited area of myocardial damage. This technique is potentially useful for ablating arrhythmias and may be safer and more controllable than intracoronary alcohol infusion.