Suppr超能文献

简单的人工神经网络模型可以生成不同速度下人类运动的基本肌肉活动模式。

Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds.

作者信息

Prentice S D, Patla A E, Stacey D A

机构信息

Department of Kinesiology, University of Waterloo, Canada.

出版信息

Exp Brain Res. 1998 Dec;123(4):474-80. doi: 10.1007/s002210050591.

Abstract

A neural network model has been developed to represent the shaping function of a central pattern generator (CPG) for human locomotion. The model was based on cadence and electromyographic data obtained from a single human subject who walked on a treadmill. The only input to the model was the fundamental timing of the gait cycle (stride rate) in the form of sine and cosine waveforms whose period was equal to the stride duration. These simple signals were then shaped into the respective muscle activation patterns of eight muscles of the lower limb and trunk. A network with a relatively small number of hidden units trained with back-propagation was able to produce an excellent representation of both the amplitude and timing characteristics of the EMGs over a range of walking speeds. The results are further discussed with respect to the dependence of some muscles upon sensory feedback and other inputs not explicitly presented to the model.

摘要

已经开发出一种神经网络模型来表示用于人类行走的中枢模式发生器(CPG)的塑形功能。该模型基于从在跑步机上行走的单个受试者获得的节奏和肌电图数据。该模型的唯一输入是以正弦和余弦波形形式表示的步态周期的基本时间(步幅率),其周期等于步幅持续时间。然后,这些简单信号被塑造成下肢和躯干八块肌肉各自的肌肉激活模式。一个具有相对较少隐藏单元并通过反向传播训练的网络能够在一系列行走速度下出色地呈现肌电图的幅度和时间特征。关于某些肌肉对感觉反馈和未明确呈现给模型的其他输入的依赖性,将进一步讨论结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验