Suppr超能文献

Peptide inhibition of ENaC.

作者信息

Ismailov I I, Shlyonsky V G, Serpersu E H, Fuller C M, Cheung H C, Muccio D, Berdiev B K, Benos D J

机构信息

Department of Physiology and Biophysics, University of Alabama at Birminghama 35294-0005, USA.

出版信息

Biochemistry. 1999 Jan 5;38(1):354-63. doi: 10.1021/bi981979s.

Abstract

Liddle's disease is an autosomal dominant form of human hypertension resulting from a basal activation of amiloride-sensitive Na+ channels (ENaC). This channel activation is produced by mutations in the beta- and/or gamma-carboxy-terminal cytoplasmic tails, in many cases causing a truncation of the last 45-76 amino acids. In this study, we tested two hypotheses; first, beta- and gamma-ENaC C-terminal truncation mutants (beta DeltaC and gamma DeltaC), in combination with the wild-type alpha-ENaC subunit, reproduce the Liddle's phenotype at the single channel level, i.e., an increase in open probability (Po), and second, these C-terminal regions of beta- and gamma-ENaC act as intrinsic blockers of this channel. Our results indicate that alpha beta DeltaC gamma DeltaC-rENaC, incorporated into planar lipid bilayers, has a significantly higher single channel Po compared to the wild-type channel (0.85 vs 0.60, respectively), and that 30-mer synthetic peptides corresponding to the C-terminal region of either beta- or gamma-ENaC block the basal-activated channel in a concentration-dependent fashion. Moreover, there was a synergy between the peptides for channel inhibition when added together. We conclude that the increase in macroscopic Na+ reabsorption that occurs in Liddle's disease is at least in part due to an increase in single channel Po and that the cytoplasmic tails of the beta- and gamma-ENaC subunits are important in the modulation of ENaC activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验