Suppr超能文献

踝关节正常及损伤外侧副韧带的磁共振成像

Magnetic resonance imaging of the normal and injured lateral collateral ligaments of the ankle.

作者信息

Ahmad M A, Pandey U C, Crerand J J, al-Shareef Z, Lapinsuo M

机构信息

Department of Radiology, North West Armed Forces Hospital, Tabuk, Kingdom of Saudi Arabia.

出版信息

Ann Chir Gynaecol. 1998;87(4):311-6.

PMID:9891772
Abstract

BACKGROUND AND AIMS

To study the role of MR Imaging in evaluating both normal and injured lateral collateral ligaments of the ankle.

MATERIALS AND METHODS

Twenty-four patients with clinically diagnosed inversion injury to the ankle and 20 healthy volunteers underwent Magnetic Resonance Imaging (MRI) of the ankle with special emphasis on the lateral complex ligaments.

RESULTS

The anterior talofibular (ATFL) and posterior talofibular ligaments (PTFL) were identified in 100% of the ankles of normal volunteers in the axial plane. The PTFL was identified in 100% in the coronal plane. The calcaneofibular ligament (CFL) was identified in 76% of the ankles in the axial, 84% in the coronal and 88% in the sagittal plane. Of the 24 patients with inversion injury, MRI showed ligament abnormalities in 16 patients, ten of these were isolated ATFL tears, five had combined ATFL and CFL tears and one case showed in addition abnormal signal in the PTFL. MRI revealed associated injuries to other ligaments and other soft tissue and osseous structures of the ankle in twelve patients.

CONCLUSION

MRI is a non-invasive, accurate technique for evaluation of the normal and injured lateral collateral ligaments of the ankle.

摘要

背景与目的

研究磁共振成像在评估踝关节正常及损伤的外侧副韧带中的作用。

材料与方法

24例临床诊断为踝关节内翻损伤的患者及20名健康志愿者接受了踝关节磁共振成像(MRI)检查,重点观察外侧复合韧带。

结果

在正常志愿者踝关节的轴位图像中,100%能识别出距腓前韧带(ATFL)和距腓后韧带(PTFL)。在冠状位图像中,100%能识别出PTFL。在轴位图像中,76%的踝关节能识别出跟腓韧带(CFL);在冠状位图像中,84%能识别出;在矢状位图像中,88%能识别出。在24例内翻损伤患者中,MRI显示16例韧带异常,其中10例为单纯ATFL撕裂,5例为ATFL和CFL联合撕裂,1例PTFL还显示异常信号。MRI显示12例患者踝关节的其他韧带、其他软组织及骨结构存在相关损伤。

结论

MRI是评估踝关节正常及损伤外侧副韧带的一种无创、准确的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验