Suppr超能文献

大肠杆菌尿嘧啶DNA糖基化酶对损伤位点的识别及尿嘧啶翻转的动力学机制

Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.

作者信息

Stivers J T, Pankiewicz K W, Watanabe K A

机构信息

Center for Advanced Research in Biotechnology, University of Maryland, National Institute for Standards and Technology, Rockville 20850, USA.

出版信息

Biochemistry. 1999 Jan 19;38(3):952-63. doi: 10.1021/bi9818669.

Abstract

The DNA repair enzyme uracil DNA glycosylase (UDG) catalyzes hydrolytic cleavage of the N-glycosidic bond of premutagenic uracil residues in DNA by flipping the uracil base from the DNA helix. The mechanism of base flipping and the role this step plays in site-specific DNA binding and catalysis by enzymes are largely unknown. The thermodynamics and kinetics of DNA binding and uracil flipping by UDG have been studied in the absence of glycosidic bond cleavage using substrate analogues containing the 2'-alpha and 2'-beta fluorine isomers of 2'-fluoro-2'-deoxyuridine (Ubeta, Ualpha) positioned adjacent to a fluorescent nucleotide reporter group 2-aminopurine (2-AP). Activity measurements show that DNA containing a Ubeta or Ualpha nucleotide is a 10(7)-fold slower substrate for UDG (t1/2 approximately 20 h), which allows measurements of DNA binding and base flipping in the absence of glycosidic bond cleavage. When UDG binds these analogues, but not other DNA molecules, a 4-8-fold 2-AP fluorescence enhancement is observed, as expected for a decrease in 2-AP base stacking resulting from enzymatic flipping of the adjacent uracil. Thermodynamic measurements show that UDG forms weak nonspecific complexes with dsDNA (KDns = 1.5 microM) and binds approximately 25-fold more tightly to Ubeta containing dsDNA (KDapp approximately 50 nM). Thus, base flipping contributes less than approximately 2 kcal/mol to the free energy of binding and is not a major component of the >10(6)-fold catalytic specificity of UDG. Kinetic studies at 25 degrees C show that site-specific binding occurs by a two-step mechanism. The first step (E + S left and right arrow ES) involves the diffusion-controlled binding of UDG to form a weak nonspecific complex with the DNA (KD approximately 1.5-3 microM). The second step (ES left and right arrow E'F) involves a rapid step leading to reversible uracil flipping (kmax approximately 1200 s-1). This step is followed closely by a conformational change in UDG that was monitored by the quenching of tryptophan fluorescence. The results provide evidence for an enzyme-assisted mechanism for uracil flipping and exclude a passive mechanism in which the enzyme traps a transient extrahelical base in the free substrate. The data suggest that the duplex structure of the DNA is locally destabilized before the base-flipping step, thereby facilitating extrusion of the uracil. Thus, base flipping contributes little to the free energy of DNA binding but contributes greatly to specificity through an induced-fit mechanism.

摘要

DNA修复酶尿嘧啶DNA糖基化酶(UDG)通过将尿嘧啶碱基从DNA螺旋中翻转出来,催化DNA中诱变前尿嘧啶残基的N-糖苷键的水解切割。碱基翻转的机制以及这一步骤在酶的位点特异性DNA结合和催化中所起的作用在很大程度上尚不清楚。在不存在糖苷键切割的情况下,使用含有与荧光核苷酸报告基团2-氨基嘌呤(2-AP)相邻的2'-氟-2'-脱氧尿苷(Uβ、Uα)的2'-α和2'-β氟异构体的底物类似物,研究了UDG与DNA结合及尿嘧啶翻转的热力学和动力学。活性测量表明,含有Uβ或Uα核苷酸的DNA是UDG的底物,其反应速度慢10^7倍(半衰期约为20小时),这使得在不存在糖苷键切割的情况下能够测量DNA结合和碱基翻转。当UDG结合这些类似物而不是其他DNA分子时,观察到2-AP荧光增强4-8倍,这与相邻尿嘧啶的酶促翻转导致2-AP碱基堆积减少的预期一致。热力学测量表明,UDG与双链DNA形成弱的非特异性复合物(KDns = 1.5 μM),并且与含有Uβ的双链DNA结合紧密约25倍(KDapp约为50 nM)。因此,碱基翻转对结合自由能的贡献小于约2千卡/摩尔,并且不是UDG大于10^6倍催化特异性的主要组成部分。在25℃下的动力学研究表明,位点特异性结合通过两步机制发生。第一步(E + S⇌ES)涉及UDG的扩散控制结合,以与DNA形成弱的非特异性复合物(KD约为1.5 - 3 μM)。第二步(ES⇌E'F)涉及一个快速步骤,导致可逆的尿嘧啶翻转(kmax约为1200 s^-1)。这一步骤之后紧接着是UDG的构象变化,通过色氨酸荧光淬灭进行监测。结果为尿嘧啶翻转的酶辅助机制提供了证据,并排除了一种被动机制,即酶在游离底物中捕获瞬时的螺旋外碱基。数据表明,在碱基翻转步骤之前,DNA的双链结构局部不稳定,从而促进尿嘧啶的挤出。因此,碱基翻转对DNA结合自由能的贡献很小,但通过诱导契合机制对特异性有很大贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验