Cremonesi L, Carrera P, Fumagalli A, Lucchiari S, Cardillo E, Ferrari M, Righetti S C, Zunino F, Righetti P G, Gelfi C
Instituto di Ricovero e Cura a Caraterre Scientifico, O San Raffaele, Unità di Genetica e Diagnostica Molecolare, Via Olgettina 60, 20132 Milan,
Clin Chem. 1999 Jan;45(1):35-40.
Among established techniques for the identification of either known or new mutations, denaturing gradient gel electrophoresis (DGGE) is one of the most effective. However, conventional DGGE is affected by major drawbacks that limit its routine application: the different denaturant gradient ranges and migration times required for different DNA fragments. We developed a modified version of DGGE for high-throughput mutational analysis, double gradient DGGE (DG-DGGE), by superimposing a porous gradient over the denaturant gradient, which maintains the zone-sharpening effect even during lengthy analyses. Because of this innovation, DG-DGGE achieves the double goals of retaining full effectiveness in the detection of mutations while allowing identical run time conditions for all fragments analyzed. Here we use retrospective analysis of a large number of well-characterized mutations and polymorphisms, spanning all predicted melting domains and the whole genomic sequence of three different genes--the cystic fibrosis transmembrane conductance regulator (CFTR), the beta-globin, and the p53 genes--to demonstrate that DG-DGGE may be applied to the rapid scanning of any sequence variation.
在用于识别已知或新突变的成熟技术中,变性梯度凝胶电泳(DGGE)是最有效的技术之一。然而,传统的DGGE存在一些主要缺点,限制了其常规应用:不同的DNA片段需要不同的变性剂梯度范围和迁移时间。我们开发了一种用于高通量突变分析的改良版DGGE,即双梯度DGGE(DG-DGGE),通过在变性剂梯度上叠加一个多孔梯度,即使在长时间分析过程中也能保持区带锐化效果。由于这一创新,DG-DGGE实现了双重目标:在检测突变时保持完全有效性,同时为所有分析片段提供相同的运行时间条件。在这里,我们通过对大量特征明确的突变和多态性进行回顾性分析,涵盖所有预测的解链结构域以及三个不同基因——囊性纤维化跨膜传导调节因子(CFTR)、β-珠蛋白和p53基因——的整个基因组序列,以证明DG-DGGE可用于快速扫描任何序列变异。