Suppr超能文献

使用原子力显微镜对吸附在云母和脂质双分子层表面的髓鞘碱性蛋白进行力测量。

Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope.

作者信息

Mueller H, Butt H J, Bamberg E

机构信息

Max-Planck-Institut fur Biophysik, D-60596 Frankfurt(Main), Germany.

出版信息

Biophys J. 1999 Feb;76(2):1072-9. doi: 10.1016/S0006-3495(99)77272-3.

Abstract

The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure.

摘要

髓鞘碱性蛋白(MBP)的机械和粘附特性对其功能(即髓鞘的紧密压实)至关重要。为了获取有关这些特性的更多信息,我们使用原子力显微镜研究了在不存在和存在牛MBP的情况下,云母以及混合的二油酰磷脂酰丝氨酸(DOPS)(20%)/ 蛋黄卵磷脂(EPC)(80%)脂质双层表面的针尖 - 样品相互作用。在接近过程中,在云母或DOPS/EPC双层上观察到短程排斥力(衰减长度为1.0 - 1.3 nm)。MBP的存在总是导致针尖与样品之间产生吸引力。当再次缩回针尖时,云母和脂质层上的力曲线不同。当附着在云母表面时,MBP分子表现出与蠕虫状链模型相符的弹性拉伸行为,其持久长度为0.5±0.25 nm,平均轮廓长度为53±19 nm。附着在脂质双层上的MBP未表现出弹性拉伸行为。这表明该蛋白质在与脂质接触时会采用不同的构象。脂质双层因MBP的附着而受到强烈修饰,表明形成了MBP - 脂质复合物,并且可能破坏了原始的双层结构。

相似文献

2
Adsorption mechanism of myelin basic protein on model substrates and its bridging interaction between the two surfaces.
Langmuir. 2015 Mar 17;31(10):3159-66. doi: 10.1021/acs.langmuir.5b00145. Epub 2015 Mar 3.
3
A thermodynamic and structural study of myelin basic protein in lipid membrane models.
Biophys J. 2007 Sep 15;93(6):1999-2010. doi: 10.1529/biophysj.106.103820. Epub 2007 May 18.
4
Dibucaine effects on structural and elastic properties of lipid bilayers.
Biophys Chem. 2009 Feb;139(2-3):75-83. doi: 10.1016/j.bpc.2008.10.006. Epub 2008 Oct 31.
5
7
Aggregation of acidic lipid vesicles by myelin basic protein: dependence on potassium concentration.
Biochemistry. 1995 Oct 17;34(41):13705-16. doi: 10.1021/bi00041a053.
8
Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers.
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):E768-75. doi: 10.1073/pnas.1401165111. Epub 2014 Feb 10.
9
Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3154-9. doi: 10.1073/pnas.0813110106. Epub 2009 Feb 13.

引用本文的文献

1
Tuning the Dimensionality of Protein-Peptide Coassemblies to Build 2D Conductive Nanomaterials.
ACS Nano. 2025 May 6;19(17):16500-16516. doi: 10.1021/acsnano.4c18613. Epub 2025 Apr 25.
2
Artificial Extracellular Vesicles Generated from T Cells Using Different Induction Techniques.
Biomedicines. 2024 Apr 20;12(4):919. doi: 10.3390/biomedicines12040919.
3
4
Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers.
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):E768-75. doi: 10.1073/pnas.1401165111. Epub 2014 Feb 10.
5
Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork.
PLoS Biol. 2013;11(6):e1001577. doi: 10.1371/journal.pbio.1001577. Epub 2013 Jun 4.
7
Self-segregation of myelin membrane lipids in model membranes.
Biophys J. 2011 Dec 7;101(11):2713-20. doi: 10.1016/j.bpj.2011.10.026.
9
A tactile response in Staphylococcus aureus.
Biophys J. 2010 Nov 3;99(9):2803-11. doi: 10.1016/j.bpj.2010.08.063.
10
Investigation of SNARE-Mediated Membrane Fusion Mechanism Using Atomic Force Microscopy.
Jpn J Appl Phys (2008). 2009 Aug;48(8):8JA03-8JA0310. doi: 10.1143/JJAP.48.08JA03.

本文引用的文献

2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Atomic force microscope.
Phys Rev Lett. 1986 Mar 3;56(9):930-933. doi: 10.1103/PhysRevLett.56.930.
4
Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins.
Biophys J. 1998 Jun;74(6):3256-63. doi: 10.1016/S0006-3495(98)78032-4.
6
Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing.
Biochemistry. 1997 Dec 9;36(49):15035-40. doi: 10.1021/bi9721748.
7
Detection of antigen-antibody binding events with the atomic force microscope.
Biochemistry. 1997 Jun 17;36(24):7457-63. doi: 10.1021/bi962531z.
8
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Science. 1997 May 16;276(5315):1109-12. doi: 10.1126/science.276.5315.1109.
9
Salt-triggered intermembrane exchange of phospholipids and hemifusion by myelin basic protein.
Biochemistry. 1997 Mar 4;36(9):2566-76. doi: 10.1021/bi962232+.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验