Rivas E, Eddy S R
Department of Genetics, Washington University, St. Louis, MO, 63110, USA.
J Mol Biol. 1999 Feb 5;285(5):2053-68. doi: 10.1006/jmbi.1998.2436.
We describe a dynamic programming algorithm for predicting optimal RNA secondary structure, including pseudoknots. The algorithm has a worst case complexity of O(N6) in time and O(N4) in storage. The description of the algorithm is complex, which led us to adopt a useful graphical representation (Feynman diagrams) borrowed from quantum field theory. We present an implementation of the algorithm that generates the optimal minimum energy structure for a single RNA sequence, using standard RNA folding thermodynamic parameters augmented by a few parameters describing the thermodynamic stability of pseudoknots. We demonstrate the properties of the algorithm by using it to predict structures for several small pseudoknotted and non-pseudoknotted RNAs. Although the time and memory demands of the algorithm are steep, we believe this is the first algorithm to be able to fold optimal (minimum energy) pseudoknotted RNAs with the accepted RNA thermodynamic model.
我们描述了一种用于预测包括假结在内的最优RNA二级结构的动态规划算法。该算法在时间上的最坏情况复杂度为O(N6),在存储空间上为O(N4)。算法的描述较为复杂,这促使我们采用一种从量子场论借鉴而来的有用图形表示法(费曼图)。我们给出了该算法的一个实现,它使用标准RNA折叠热力学参数以及一些描述假结热力学稳定性的参数,为单个RNA序列生成最优的最小能量结构。我们通过使用该算法预测几个小的含假结和不含假结的RNA的结构,来展示算法的特性。尽管该算法对时间和内存的要求很高,但我们认为这是第一种能够依据公认的RNA热力学模型折叠出最优(最小能量)含假结RNA的算法。