Suppr超能文献

Immune-mediated alterations in nociceptive sensory function in Aplysia californica.

作者信息

Clatworthy A L, Grose E

机构信息

University of North Carolina at Charlotte, Department of Biology, Charlotte, NC 28223, USA.

出版信息

J Exp Biol. 1999 Mar;202(Pt 5):623-30. doi: 10.1242/jeb.202.5.623.

Abstract

Nerve injury in Aplysia californica is accompanied by a profound long-lasting enhancement of the excitability of nociceptive sensory neurons that have axons in injured nerves. It is likely that a variety of signals are involved in triggering this injury-induced sensory plasticity. The objective of the present study was to determine whether cells of the cellular defense system (hemocytes) play a role in the modulation of sensory excitability following injury. In support of such an idea, we have shown previously that the induction of a cellular defense reaction close to sensory axons is accompanied by an increase in the excitability of sensory neurons with axons close to responding hemocytes. Furthermore, in the present study, we verified that, following axonal crush, numerous hemocytes accumulate at the injured site on the nerve. Using a hemocyte/nervous system co-culture preparation, we found that there were no significant differences in the expression of injury-induced sensory plasticity between sensory neurons incubated in the presence or absence of hemocytes. To overcome some potential limitations of our co-culture preparation, we used the endotoxin lipopolysaccharide (LPS) as a tool to activate the hemocytes. Sensory cells incubated in the presence of LPS and hemocytes were significantly more excitable than sensory cells incubated in the presence of LPS alone. We speculate that the addition of LPS to the incubation medium containing hemocytes enhanced the release of hemocyte-derived cytokine-like factors such as interleukin-1 and tumor necrosis factor. These cytokine-like factors may act as signals to modulate the expression of injury-induced sensory hyperexcitability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验