Suppr超能文献

[复制子模型适用于高等真核生物吗?]

[Is the replicon model applicable to higher eukaryotes?].

作者信息

de Recondo A M

机构信息

UPR 9044 du CNRS Génétique et biologie moléculaire de la réplication, Institut de recherches sur le cancer, Villejuif, France.

出版信息

C R Acad Sci III. 1998 Dec;321(12):961-78. doi: 10.1016/s0764-4469(99)80052-3.

Abstract

Thirty-five years ago, the Replicon model was proposed by Jacob, Brenner and Cuzin to explain the regulation of the Escherichia coli DNA replication. In this model, a genetic element, the replicator, would function as a target for a positive-acting initiator protein to drive the initiation of replication. This simple idea has been extremely useful in providing a framework to explain how the initiation of DNA replication occurs in all organisms. The identification of autonomously replicating sequences (ARSs) in budding yeast was the first extension of the Replicon model to eukaryotic chromosomes. In the higher eukaryotes, many biochemically defined replication start sites have been identified; nevertheless there is little genetic data indicating that these sites contain DNA sequences that are essential for replication. Moreover, in early Xenopus or Drosophila embryos, specific DNA sequences are not required either for initiating DNA replication or for preventing rereplication within a single cell cycle. This apparently fundamental difference between replicators in yeast and metazoan embryos may be more superficial than initially thought. In fact, during the past several years, an eukaryotic initiator conserved from yeast to man and also present in embryonic cells, the origin recognition complex (ORC), has been characterized, suggesting that the initiation mechanism should be essentially the same in prokaryotes and eukaryotes. In addition, the efficient once-per-cell-cycle replication of DNA is ensured in eukaryotes by a simple two-step mechanism in which the assembly of stable prereplicative complexes (PreRCs) at origins precedes and is temporally separated from the firing of these origins. Regulation of this process by cyclin-dependent kinases ensures that when origins fire, the cell is no longer competent to form new PreRCs. Now, it is important to understand how these complexes are remodeled or disassembled during replication initiation to trigger the transition from a stable origin-bound complex to a mobile replication machine.

摘要

35年前,雅各布、布伦纳和库赞提出了复制子模型,以解释大肠杆菌DNA复制的调控机制。在这个模型中,一种遗传元件——复制起点,将作为一种正向作用的起始蛋白的作用靶点,来驱动复制的起始。这个简单的想法对于提供一个框架来解释所有生物体中DNA复制的起始是如何发生的极为有用。在芽殖酵母中自主复制序列(ARSs)的鉴定是复制子模型对真核染色体的首次扩展。在高等真核生物中,已经鉴定出许多生化定义的复制起始位点;然而,几乎没有遗传数据表明这些位点包含对复制至关重要的DNA序列。此外,在早期非洲爪蟾或果蝇胚胎中,启动DNA复制或防止在单个细胞周期内再次复制都不需要特定的DNA序列。酵母和后生动物胚胎中复制起点之间这种明显的根本差异可能比最初认为的更为表面。事实上,在过去几年中,一种从酵母到人类都保守且也存在于胚胎细胞中的真核起始因子——起源识别复合物(ORC),已得到表征,这表明原核生物和真核生物中的起始机制应该基本相同。此外,真核生物通过一种简单的两步机制确保DNA在每个细胞周期仅有效复制一次,其中在复制起点处稳定的复制前复合物(PreRCs)的组装先于这些起点的激活并在时间上与之分开。细胞周期蛋白依赖性激酶对这一过程的调控确保了当复制起点激活时,细胞不再能够形成新的PreRCs。现在,了解这些复合物在复制起始过程中是如何重塑或解体以触发从稳定的与复制起点结合的复合物向移动的复制机器的转变非常重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验