Suppr超能文献

预测患者人数:时间序列模型中的共性

Forecasting patient census: commonalities in time series models.

作者信息

Wood S D

出版信息

Health Serv Res. 1976 Summer;11(2):158-65.

Abstract

Highly accurate patient census forecasting models are specified for five hospitals by use of a general equation for integrated autoregressive moving average (IARMA) forecasts. A general census forecasting model, based on features common to all five institution-specific models, is described and its forecasts are compared to those from the specific models.

摘要

通过使用集成自回归移动平均(IARMA)预测的通用方程,为五家医院指定了高度准确的患者普查预测模型。描述了一个基于所有五个特定机构模型共同特征的通用普查预测模型,并将其预测结果与特定模型的预测结果进行比较。

相似文献

2
Forecasting daily patient volumes in the emergency department.预测急诊科每日患者数量。
Acad Emerg Med. 2008 Feb;15(2):159-70. doi: 10.1111/j.1553-2712.2007.00032.x.
3
Forecasting models of emergency department crowding.急诊科拥挤的预测模型。
Acad Emerg Med. 2009 Apr;16(4):301-8. doi: 10.1111/j.1553-2712.2009.00356.x. Epub 2009 Feb 4.
6
Forecasting patient tray census for hospital food service.
Health Serv Res. 1975 Winter;10(4):384-93.
8
A comparative study of autoregressive neural network hybrids.自回归神经网络混合模型的比较研究。
Neural Netw. 2005 Jun-Jul;18(5-6):781-9. doi: 10.1016/j.neunet.2005.06.003.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验