Suppr超能文献

Expression of nitric oxide synthase isoforms (NOS II and NOS III) in adult rat lung in hyperoxic pulmonary hypertension.

作者信息

Steudel W, Watanabe M, Dikranian K, Jacobson M, Jones R C

机构信息

Department of Anesthesia and Critical Care, Molecular and Cell Biology Laboratory, Massachusetts General Hospital-East, Harvard Medical School, 149 East 13th Street, Charlestown, MA 02129, USA.

出版信息

Cell Tissue Res. 1999 Feb;295(2):317-29. doi: 10.1007/s004410051238.

Abstract

Breathing air with a high oxygen tension induces an inflammatory response and injures the microvessels of the lung. The resulting development of smooth muscle cells in these segments contributes to changes in vasoreactivity and increased pulmonary artery pressure. This in vivo study determines the temporal and spatial expression of endogenous endothelial nitric oxide synthase (NOS III) and inducible NOS (NOS II), important enzymes regulating vasoreactivity and inflammation, in the adult rat lung during the development of experimental pulmonary hypertension induced by oxidant injury. We analyzed the cellular distribution of these NOS isoforms, using specific antibodies, and assessed enzyme activity at baseline and after 1-28 days of hyperoxia (FIO2 0.87). The number of NOS III-immuno-positive endothelial cells increased early in hyperoxia and then remained high. By day 28, the relative number of these cells had increased from 40% in proximal vessels and 13-16% in distal alveolar vessels of the normal lung to 73-86% and 40-59%, respectively, in hyperoxia. Pulmonary alveolar macrophages (PAMs), normally few in number and only weakly immunopositive for NOS II or III in the normal lung, increased in number in hyperoxia and were strongly immunopositive for each isoform. These morphological data were supported by a temporal increase in total and calcium-independent NOS activity. Thus NOS expression and activity significantly increased in hyperoxia as pulmonary hypertension developed, and NOS III expression increased selectively in vascular endothelial cells, while both NOS isoforms were expressed by the PAM population. We conclude that this increase in expression of a potent vasodilator, an antiproliferative agent for smooth muscle cells, and an antioxidant molecule represents an adaptive response to protect the lung from oxidant-induced vascular and epithelial injury.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验