Suppr超能文献

Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant.

作者信息

Vera-Estrella R, Barkla B J, Bohnert H J, Pantoja O

机构信息

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

出版信息

Planta. 1999 Jan;207(3):426-35. doi: 10.1007/s004250050501.

Abstract

A salt-tolerant stable cell-suspension culture from the halophyte Mesembryanthemum crystallinum L. has been established from calli generated from leaves of 6-week-old well-watered plants. Optimal cell growth was observed in the presence of 200 mM NaCl, and within 7 d cells were able to concentrate Na+ to levels exceeding those in the growth medium. Accumulation of Na+ was paralled by increases in the compatible solute pinitol and myo-inositol methyl transferase (IMT), a key enzyme in pinitol biosynthesis. Increasing concentrations of NaCl stimulated the activities of tonoplast and plasma-membrane H(+)-ATPases. Immunodetection of the ATPases showed that the increased activity was not due to changes in protein amount that could be attributed to treatment conditions. A specific role for these mechanisms in salt-adaptation is supported by the inability of mannitol-induced water stress to elicit the same responses, and the absence of enzyme activity and protein expression associated with Crassulacean acid metabolism in the cells. Results demonstrate that these M. crystallinum cell suspensions show a halophytic growth response, comparable to that of the whole plant, and thus provide a valuable tool for studying signaling and biochemical pathways involved in salt recognition and response.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验