Suppr超能文献

果蝇和哺乳动物基因组中的核苷酸替换模式。

Patterns of nucleotide substitution in Drosophila and mammalian genomes.

作者信息

Petrov D A, Hartl D L

机构信息

Harvard University Society of Fellows, 78 Mt. Auburn Street, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1475-9. doi: 10.1073/pnas.96.4.1475.

Abstract

To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant.

摘要

为了估计无约束DNA序列的分子进化模式,我们使用最大简约法将一个非长末端重复反转录转座元件的系统发育树分为内部分支(主要代表活跃谱系的约束进化)或末端分支(主要代表不受选择约束且作为假基因进化的无功能“到达即死亡”拷贝)。无约束序列中的核苷酸替换模式预计与点突变模式一致。我们研究了果蝇属(果蝇亚属)中的反转录转座子海伦娜以及黑腹果蝇物种亚组(Sophophora亚属)。点突变模式无法区分,这表明在进化时间(4000万至6000万年)内具有相当的稳定性。不同点突变的相对频率不相等,但“转换偏向”主要是由于G.C到A.T替换大约多出2倍。自发突变偏向于A.T碱基对,预期的突变平衡约为65%的A + T(与长内含子非常相似)。这些数据还使得首次能够详细比较果蝇和哺乳动物中的点突变模式。尽管模式不同,但所有的统计学显著性都来自于哺乳动物中G.C到A.T替换的速率要高得多,这可能是由于甲基化胞嘧啶“热点”。当不考虑G.C到A.T替换时,其余差异会大幅减少且无统计学显著性。

相似文献

1
Patterns of nucleotide substitution in Drosophila and mammalian genomes.
Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1475-9. doi: 10.1073/pnas.96.4.1475.
2
High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups.
Mol Biol Evol. 1998 Mar;15(3):293-302. doi: 10.1093/oxfordjournals.molbev.a025926.
3
Genome size as a mutation-selection-drift process.
Genes Genet Syst. 1999 Oct;74(5):201-7. doi: 10.1266/ggs.74.201.
4
Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila.
Gene. 1997 Dec 31;205(1-2):279-89. doi: 10.1016/s0378-1119(97)00516-7.
5
High intrinsic rate of DNA loss in Drosophila.
Nature. 1996 Nov 28;384(6607):346-9. doi: 10.1038/384346a0.
8
Genomic heterogeneity of background substitutional patterns in Drosophila melanogaster.
Genetics. 2005 Feb;169(2):709-22. doi: 10.1534/genetics.104.032250. Epub 2004 Nov 1.
9
Molecular evolution of the histone 3 multigene family in the Drosophila melanogaster species subgroup.
Mol Phylogenet Evol. 2000 Sep;16(3):339-43. doi: 10.1006/mpev.2000.0810.
10
Evolutionary pattern of the gtwin retrotransposon in the Drosophila melanogaster subgroup.
Genetica. 2007 Jun;130(2):161-8. doi: 10.1007/s10709-006-9003-y. Epub 2006 Aug 4.

引用本文的文献

2
Base Composition, Codon Usage, and Patterns of Gene Sequence Evolution in Butterflies.
Genome Biol Evol. 2023 Aug 1;15(8). doi: 10.1093/gbe/evad150.
8
Evolution and genomic signatures of spontaneous somatic mutation in intestinal stem cells.
Genome Res. 2021 Aug;31(8):1419-1432. doi: 10.1101/gr.268441.120. Epub 2021 Jun 24.
10
Mutation bias interacts with composition bias to influence adaptive evolution.
PLoS Comput Biol. 2020 Sep 28;16(9):e1008296. doi: 10.1371/journal.pcbi.1008296. eCollection 2020 Sep.

本文引用的文献

1
Pseudogene evolution in Drosophila suggests a high rate of DNA loss.
Mol Biol Evol. 1998 Nov;15(11):1562-7. doi: 10.1093/oxfordjournals.molbev.a025883.
2
High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups.
Mol Biol Evol. 1998 Mar;15(3):293-302. doi: 10.1093/oxfordjournals.molbev.a025926.
3
Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila.
Gene. 1997 Dec 31;205(1-2):279-89. doi: 10.1016/s0378-1119(97)00516-7.
4
Codon bias evolution in Drosophila. Population genetics of mutation-selection drift.
Gene. 1997 Dec 31;205(1-2):269-78. doi: 10.1016/s0378-1119(97)00400-9.
5
Strand asymmetries in DNA evolution.
Trends Genet. 1997 Jun;13(6):240-5. doi: 10.1016/S0168-9525(97)01118-9.
6
High intrinsic rate of DNA loss in Drosophila.
Nature. 1996 Nov 28;384(6607):346-9. doi: 10.1038/384346a0.
7
Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana.
Genetics. 1996 Feb;142(2):569-78. doi: 10.1093/genetics/142.2.569.
8
Instability and decay of the primary structure of DNA.
Nature. 1993 Apr 22;362(6422):709-15. doi: 10.1038/362709a0.
9
Codon usage bias and base composition of nuclear genes in Drosophila.
Genetics. 1993 Jul;134(3):847-58. doi: 10.1093/genetics/134.3.847.
10
Reduced natural selection associated with low recombination in Drosophila melanogaster.
Mol Biol Evol. 1993 Nov;10(6):1239-58. doi: 10.1093/oxfordjournals.molbev.a040074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验