Suppr超能文献

商业毒理学预测系统:监管视角

Commercial toxicology prediction systems: a regulatory perspective.

作者信息

Richard A M

机构信息

Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

出版信息

Toxicol Lett. 1998 Dec 28;102-103:611-6. doi: 10.1016/s0378-4274(98)00257-4.

Abstract

The use of commercial toxicity prediction systems in a regulatory setting must consider both the limitations and capabilities of the methods, as well as the ultimate use of the predictions, e.g. for testing prioritization, screening, or supporting regulatory decisions. Current systems are better suited to hazard identification (i.e. positive identification of activity-conferring features) than to ruling out hazard. Two recent examples (an EPA testing prioritization exercise for water disinfection byproducts and a regulatory action on 2,4,6-tribromophenol) illustrate issues involved in regulatory applications of SAR and commercial prediction systems. The challenge for the future will be to improve technologies for prediction within the constraints of available data, make optimal use of new test data, and better integrate elements of quantitative modeling (QSAR), empirical association, and biological and chemical mechanisms towards the goal of toxicity prediction.

摘要

在监管环境中使用商业毒性预测系统,必须考虑这些方法的局限性和能力,以及预测结果的最终用途,例如用于测试优先级排序、筛选或支持监管决策。目前的系统更适合于危害识别(即对赋予活性的特征进行阳性识别),而不是排除危害。最近的两个例子(美国环境保护局对水消毒副产物的测试优先级排序活动,以及对2,4,6-三溴苯酚的监管行动)说明了在监管应用中结构活性关系(SAR)和商业预测系统所涉及的问题。未来的挑战将是在现有数据的限制范围内改进预测技术,充分利用新的测试数据,并更好地整合定量建模(QSAR)、经验关联以及生物和化学机制等要素,以实现毒性预测的目标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验