Suppr超能文献

Neurotoxicity of environmental chemicals and their mechanism of action.

作者信息

Tilson H A, Kodavanti P R, Mundy W R, Bushnell P J

机构信息

Neurotoxicology Division, US EPA, Research Triangle Park, N. Carolina 27711, USA.

出版信息

Toxicol Lett. 1998 Dec 28;102-103:631-5. doi: 10.1016/s0378-4274(98)00271-9.

Abstract

Despite a ban on their manufacture in 1977, polychlorinated biphenyls (PCBs) are still found in significant quantities in the environment. Developmental exposure to PCBs and related compounds has been reported to be neurotoxic in human and animals. Research in our laboratory has focused on the possible site(s) and mechanism(s) of PCB-induced developmental neurotoxicity. Recent experiments with rats found that developmental exposure to Aroclor-1254 (ARC) affects the acquisition of a lever press response and produces long-term changes in calcium buffering and protein kinase C (PKC) activity in the brain. In vitro studies in our laboratory have found that ARC increases [3H]phorbol ester binding, an indirect measure of PKC translocation, and inhibits calcium buffering in microsomes and mitochondria. Other experiments indicate that PCB congeners with chlorine substitutions at ortho- or low lateral substitutions are active in vitro, while non-ortho-substituted congeners are less active or inactive. Other research suggests that the lack of coplanarity of the PCB molecule is related to in vitro activity of PCB congeners. These studies indicate that in vivo developmental exposure to PCBs alters behavior and second messenger systems during adulthood, while in vitro experiments indicate that nervous system activity is related to ortho-substituted congeners that tend to be non-coplanar in configuration. Our results are consistent with the hypothesis that developmental neurotoxicity of ARC is due, in part, to the presence of ortho-substituted PCB congeners.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验