Jong M C, van Dijk K W, Dahlmans V E, Van der Boom H, Kobayashi K, Oka K, Siest G, Chan L, Hofker M H, Havekes L M
TNO-Prevention and Health, Gaubius Laboratory, 2301 CE Leiden, The Netherlands.
Biochem J. 1999 Mar 1;338 ( Pt 2)(Pt 2):281-7.
We have shown previously that human apolipoprotein (apo)C1 transgenic mice exhibit hyperlipidaemia, due primarily to an impaired clearance of very-low-density lipoprotein (VLDL) particles from the circulation. In the absence of at least the low-density-lipoprotein receptor (LDLR), it was shown that APOC1 overexpression in transgenic mice inhibited the hepatic uptake of VLDL via the LDLR-related protein. In the present study, we have now examined the effect of apoC1 on the binding of lipoproteins to both the VLDL receptor (VLDLR) and the LDLR. The binding specificity of the VLDLR and LDLR for apoC1-enriched lipoprotein particles was examined in vivo through adenovirus-mediated gene transfer of the VLDLR and the LDLR [giving rise to adenovirus-containing (Ad)-VLDLR and Ad-LDLR respectively] in APOC1 transgenic mice, LDLR-deficient (LDLR-/-) mice and wild-type mice. Remarkably, Ad-VLDLR treatment did not reduce hyperlipidaemia in transgenic mice overexpressing human APOC1, irrespective of both the level of transgenic expression and the presence of the LDLR, whereas Ad-VLDLR treatment did reverse hyperlipidaemia in LDLR-/- and wild-type mice. On the other hand, Ad-LDLR treatment strongly decreased plasma lipid levels in these APOC1 transgenic mice. These results suggest that apoC1 inhibits the clearance of lipoprotein particles via the VLDLR, but not via the LDLR. This hypothesis is corroborated by in vitro binding studies. Chinese hamster ovary (CHO) cells expressing the VLDLR (CHO-VLDLR) or LDLR (CHO-LDLR) bound less APOC1 transgenic VLDL than wild-type VLDL. Intriguingly, however, enrichment with apoE enhanced dose-dependently the binding of wild-type VLDL to CHO-VLDLR cells (up to 5-fold), whereas apoE did not enhance the binding of APOC1 transgenic VLDL to these cells. In contrast, for binding to CHO-LDLR cells, both wild-type and APOC1 transgenic VLDL were stimulated upon enrichment with apoE. From these studies, we conclude that apoC1 specifically inhibits the apoE-mediated binding of triacylglycerol-rich lipoprotein particles to the VLDLR, whereas apoC1-enriched lipoproteins can still bind to the LDLR. The variability in specificity of these lipoprotein receptors for apoC1-containing lipoprotein particles provides further evidence for a regulatory role of apoC1 in the delivery of lipoprotein constituents to different tissues on which these receptors are located.
我们之前已经表明,人类载脂蛋白(apo)C1转基因小鼠表现出高脂血症,这主要是由于极低密度脂蛋白(VLDL)颗粒从循环中的清除受损。在至少缺乏低密度脂蛋白受体(LDLR)的情况下,研究表明转基因小鼠中APOC1的过表达通过LDLR相关蛋白抑制了肝脏对VLDL的摄取。在本研究中,我们现在研究了apoC1对脂蛋白与VLDL受体(VLDLR)和LDLR结合的影响。通过在APOC1转基因小鼠、LDLR缺陷(LDLR-/-)小鼠和野生型小鼠中通过腺病毒介导的VLDLR和LDLR基因转移(分别产生含腺病毒的(Ad)-VLDLR和Ad-LDLR),在体内检测了VLDLR和LDLR对富含apoC1的脂蛋白颗粒的结合特异性。值得注意的是,Ad-VLDLR处理并没有降低过表达人类APOC1的转基因小鼠的高脂血症,无论转基因表达水平和LDLR的存在情况如何,而Ad-VLDLR处理确实逆转了LDLR-/-和野生型小鼠的高脂血症。另一方面,Ad-LDLR处理强烈降低了这些APOC1转基因小鼠的血浆脂质水平。这些结果表明,apoC1通过VLDLR抑制脂蛋白颗粒的清除,但不通过LDLR。这一假设得到了体外结合研究的证实。表达VLDLR(CHO-VLDLR)或LDLR(CHO-LDLR)的中国仓鼠卵巢(CHO)细胞与APOC1转基因VLDL的结合比野生型VLDL少。然而,有趣的是,apoE的富集剂量依赖性地增强了野生型VLDL与CHO-VLDLR细胞的结合(高达5倍),而apoE并没有增强APOC1转基因VLDL与这些细胞的结合。相反,对于与CHO-LDLR细胞的结合,野生型和APOC1转基因VLDL在apoE富集后均受到刺激。从这些研究中,我们得出结论,apoC1特异性抑制apoE介导的富含三酰甘油的脂蛋白颗粒与VLDLR的结合,而富含apoC1的脂蛋白仍可与LDLR结合。这些脂蛋白受体对含apoC1的脂蛋白颗粒的特异性差异为apoC1在将脂蛋白成分递送至这些受体所在的不同组织中的调节作用提供了进一步的证据。