Suppr超能文献

一类依赖S-甲基蛋氨酸的硫醇/硒醇甲基转移酶。在硒耐受性中的作用及进化关系。

A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation.

作者信息

Neuhierl B, Thanbichler M, Lottspeich F, Böck A

机构信息

Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 Munich, Germany.

出版信息

J Biol Chem. 1999 Feb 26;274(9):5407-14. doi: 10.1074/jbc.274.9.5407.

Abstract

Several plant species can tolerate high concentrations of selenium in the environment, and they accumulate organoselenium compounds. One of these compounds is Se-methylselenocysteine, synthesized by a number of species from the genus Astragalus (Fabaceae), like A. bisulcatus. An enzyme has been previously isolated from this organism that catalyzes methyl transfer from S-adenosylmethionine to selenocysteine. To elucidate the role of the enzyme in selenium tolerance, the cDNA coding for selenocysteine methyltransferase from A. bisulcatus was cloned and sequenced. Data base searches revealed the existence of several apparent homologs of hitherto unassigned function. The gene for one of them, yagD from Escherichia coli, was cloned, and the protein was overproduced and purified. A functional analysis showed that the YagD protein catalyzes methylation of homocysteine, selenohomocysteine, and selenocysteine with S-adenosylmethionine and S-methylmethionine as methyl group donors. S-Methylmethionine was now shown to be also the physiological methyl group donor for the A. bisulcatus selenocysteine methyltransferase. A model system was set up in E. coli which demonstrated that expression of the plant and, although to a much lesser degree, of the bacterial methyltransferase gene increases selenium tolerance and strongly reduces unspecific selenium incorporation into proteins, provided that S-methylmethionine is present in the medium. It is postulated that the selenocysteine methyltransferase under selective pressure developed from an S-methylmethionine-dependent thiol/selenol methyltransferase.

摘要

几种植物物种能够耐受环境中高浓度的硒,并积累有机硒化合物。其中一种化合物是硒甲基硒代半胱氨酸,由黄芪属(豆科)的一些物种合成,如双槽黄芪。此前已从该生物体中分离出一种酶,它催化从S-腺苷甲硫氨酸向硒代半胱氨酸的甲基转移。为了阐明该酶在硒耐受性中的作用,克隆并测序了双槽黄芪中编码硒代半胱氨酸甲基转移酶的cDNA。数据库搜索揭示了几种功能尚未确定的明显同源物的存在。其中之一来自大肠杆菌的yagD基因被克隆,该蛋白质被过量表达并纯化。功能分析表明,YagD蛋白以S-腺苷甲硫氨酸和S-甲基甲硫氨酸作为甲基供体,催化同型半胱氨酸、硒代同型半胱氨酸和硒代半胱氨酸的甲基化。现在表明,S-甲基甲硫氨酸也是双槽黄芪硒代半胱氨酸甲基转移酶的生理甲基供体。在大肠杆菌中建立了一个模型系统,该系统表明,只要培养基中存在S-甲基甲硫氨酸,植物甲基转移酶基因以及细菌甲基转移酶基因(尽管程度要小得多)的表达都会提高硒耐受性,并强烈减少非特异性硒掺入蛋白质中。据推测,在选择性压力下,硒代半胱氨酸甲基转移酶是从依赖S-甲基甲硫氨酸的硫醇/硒醇甲基转移酶进化而来的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验